Modular Arithmetic

<table>
<thead>
<tr>
<th>Easy Congruence Relations</th>
<th>Harder Congruence Relations</th>
<th>Properties of Modular Arithmetic</th>
<th>Theorems Associated with Modular Arithmetic</th>
<th>Miscellaneous</th>
</tr>
</thead>
</table>

Abstract Algebra

- [GameBoard](#)
- [Full Screen](#)
- [Quit](#)
Easy Congruence Relations for 100.

If \(62 \equiv x \pmod{5} \)

\[
x = 0 \\
x = 1 \\
x = 2 \\
x = 3 \\
x = 4
\]
Easy Congruence Relations for 200.

\[38 \equiv x \pmod{12} \]

\begin{align*}
 x &= 0 \\
 x &= 2 \\
 x &= 4 \\
 x &= 8 \\
 x &= 10
\end{align*}
Easy Congruence Relations for 300.

\[125 \equiv 1 \pmod{x} \]

\[x = 31 \]
\[x = 11 \]
\[x = 9 \]
\[x = 26 \]
\[x = 14 \]
Easy Congruence Relations for 400.

\[x \equiv 7 \pmod{13} \]

\[x = 31 \]
\[x = 45 \]
\[x = 56 \]
\[x = 72 \]
\[x = 86 \]
Harder Congruence Relations for 100.

\[-7 \equiv x \pmod{17}\]

4
6
10
12
16
Harder Congruence Relations for 200.

Solve \(x + x + x \equiv 0 \pmod{3} \)

0
1
2
None of the above
All of the above
Harder Congruence Relations for 300.

How would you express: "the sum of two even numbers is even" in mod 2?

\[1 + 0 \equiv 0 \pmod{2} \]
\[1 + 0 \equiv 1 \pmod{2} \]
\[0 + 0 \equiv 0 \pmod{2} \]
\[0 + 0 \equiv 1 \pmod{2} \]
\[1 + 1 \equiv 0 \pmod{2} \]
Harder Congruence Relations for 400.

What number would fit within this class of integers?
\ldots, -14, -8, -2, 0, 6, 12, 18, \ldots

26
34
48
52
68
Properties of Modular Arithmetic for 100.

We say that two integers \(a \) and \(b \) are congruent modulo \(m \) if there is an integer \(k \) such that

\[
\begin{align*}
 a - b &= m/k \\
 a - kb &= m \\
 ka - b &= m \\
 a - b &= km \\
 a + b &= km
\end{align*}
\]
Properties of Modular Arithmetic for 200.

What is the name of this property in modular arithmetic?

\[a \equiv a \pmod{m}. \]

- closed under addition
- symmetry
- transitivity
- reflexivity
- closed under multiplication
Properties of Modular Arithmetic for 300.

What is the name of this property in modular arithmetic?
If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.

closed under addition

symmetry

transitivity

reflexivity

closed under multiplication
Properties of Modular Arithmetic for 400.

What is the name of this property in modular arithmetic?
If \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \), then \(a \equiv c \pmod{m} \).

closed under addition

symmetry

transitivity

reflexivity

closed under multiplication
Theorems Associated with Modular Arithmetic for 100.

What is the name of the following theorem?

\[|G| = |G : H||H| \]

Euler’s Theorem
Lagrange’s Theorem
Chinese Remainder Theorem
Fermat’s Little Theorem
None of the above
Theorems Associated with Modular Arithmetic for 200.

What is the name of the following theorem?

\[a^p(n) \equiv 1 \pmod{n} \]

Euler’s Theorem
Lagrange’s Theorem
Chinese Remainder Theorem
Fermat’s Little Theorem
None of the above
Theorems Associated with Modular Arithmetic for 300.

What is the name of the following theorem? For \(p \) prime, \(a^p \equiv a \pmod{p} \)

- Euler’s Theorem
- Lagrange’s Theorem
- Chinese Remainder Theorem
- Fermat’s Little Theorem
- None of the above
Theorems Associated with Modular Arithmetic for 400.

What is the name of the following theorem? Suppose \(n_1, n_2, n_k \) are positive integers which are pairwise coprime. Then, for any given set of integers \(a_1, a_2, a_k \), there exists an integer \(x \) solving the system of simultaneous congruences

\[
x \equiv a_1 \pmod{n_1}, \quad x \equiv a_2 \pmod{n_2}, \ldots \quad x \equiv a_k \pmod{n_k}.
\]

Euler’s Theorem

Lagrange’s Theorem

Chinese Remainder Theorem

Fermat’s Little Theorem
None of the above
Who played a major role in the discovery of Modular Arithmetic?

- Laplace
- Lagrange
- Bernoulli
- Leibnitz
- Pascal
- Gauss
In what year was Modular Arithmetic first discovered?

- Around 2500 BC
- 1651
- 1724
- 1801
- 2001
Miscellaneous for 300.

If \(a \equiv b \pmod{N} \) and \(c \equiv d \pmod{N} \) then \((a + c) \equiv (b + d) \pmod{N} \). Why is this so?

- Modular arithmetic is reflexive
- Modular arithmetic is symmetric
- Modular arithmetic is closed under addition
- Modular arithmetic is closed under multiplication
- None of the above
What is the name of the following theorem? \(nx + my = 1 \)

- Euler’s Theorem
- Lagrange’s Theorem
- Chinese Remainder Theorem
- Fermat’s Little Theorem
- Bezout’s Theorem