Properties of Integers

<table>
<thead>
<tr>
<th>Properties</th>
<th>Adding and Subtracting Integers</th>
<th>Prime Numbers</th>
<th>Divisibility Rules</th>
<th>Surprise</th>
</tr>
</thead>
</table>

Properties for 100.

Identify the property shown: \(5x + 0 = 5x\)

- Commutative Property of Addition
- Identity Property of Addition
- Inverse Property of Addition
- Multiplication Property of Zero
- Distributive Property
Properties for 200.

Identify the property shown: \(-3(y + 8) = -3y + (-3)\cdot 8\)

- Associative Property of Addition
- Associative Property of Multiplication
- Commutative Property of Multiplication
- Distributive Property
- Commutative Property of Addition
Properties for 300.

Identify the property shown: \((11x + 15y) + 24z = 11x + (15y + 24z)\)

- Distributive Property
- Commutative Property of Multiplication
- Identity Property of Addition
- Associative Property of Multiplication
- Associative Property of Addition
Properties for 400.

Identify the property shown: \((3 \cdot 7) \cdot 2 = (7 \cdot 3) \cdot 2\)

- Associative Property of Multiplication
- Distributive Property
- Commutative Property of Multiplication
- Distributive Property
- Associative Property of Addition
Adding and Subtracting Integers for 100.

Simplify $-7 - 7$

0
14
49
-49
-14
Adding and Subtracting Integers for 200.

Simplify \(-18 + 43 + (-75)\)

\(-14\)

14

\(-50\)

50

none of them
Adding and Subtracting Integers for 300.

Evaluate $x - y + z$ if $x = -3$, $y = -7$, $z = -4$

14

−14

6

0

none of them
Adding and Subtracting Integers for 400.

Evaluate $ab - cd$ if $a = 5$, $b = 2$, $c = -4$, $d = -2$

18

-18

2

-2

none of them
Prime Numbers for 100.

Which of the numbers 1-10 are prime?

1, 2, 3, 5, 7
2, 3, 5, 7, 9
2, 3, 5, 7
1, 3, 5, 7, 9
all of them except 10
Prime Numbers for 200.

Find the prime factorization for 90

$2 \cdot 5 \cdot 9$

$2^2 \cdot 3 \cdot 5$

$2 \cdot 3^2 \cdot 5$

$9 \cdot 10$

none of them
Prime Numbers for 300.

Find the prime factorization for 330

\[2 \cdot 5 \cdot 33 \]
\[10 \cdot 33 \]
\[3^2 \cdot 10 \]
\[3 \cdot 11^2 \]
\[2 \cdot 3 \cdot 5 \cdot 11 \]
Prime Numbers for 400.

Which of the following are prime numbers?
13, 21, 23, 42, 51, 53, 61, 67, 79, 81, 97

all of them except 42
13, 23, 51, 53, 61, 67, 79, 97
13, 23, 51, 53, 61, 79, 97
13, 23, 53, 61, 67, 79, 97
13, 21, 23, 51, 53, 61, 67, 79, 97
Divisibility Rules for 100.

Which of the following is a quick trick to tell if a number is divisible by 6?

- The last digit is divisible by 6.
- The sum of the digits is divisible by 6.
- The number is divisible by 2 and 3.
- The last digit is divisible by 2 and 3.
- I don’t care
Divisibility Rules for 200.

Which of the following is a quick trick to tell if a number is divisible by 4?

- the number is divisible by 2
- the sum of the digits is divisible by 4
- the number consisting of the last two digits is divisible by 4
- the sum of the digits is divisible by 2
- None of the above
Divisibility Rules for 300.

The number 138 is divisible by

2, 3, 4, 6

2 only

2, 3, 6

2, 3, 6, 9

2, 3, 4, 6, 9
Divisibility Rules for 400.

The number 544,632 is divisible by

- only 2
- 2, 3, 4, 6, and 9
- 2 and 4
- 2, 3, 4, and 9
- 2, 3, 4, and 6
Surprise for 100.

Simplify: \(-4^2 + 5 \cdot (-3)^2\)

61
-61
22
38
29
Surprise for 200.

What number system do we use to represent the digits 0-9?

Greek
Mayan
Arabic
Roman
European
Surprise for 300.

Find least common multiple of 45 and 30

15
5
none of them
900
1350
Surprise for 400.

Two numbers whose product is -24 and whose sum is -10

4, -6
3, -8
-2, 12
-4, 6
2, -12