The idea behind the channel assignment problem comes from assigning radio frequencies to different radio transmitters. The problem is when transmitters that are relatively close to one another have frequencies that interfere with one another. Graph theory has been used to help work on this problem. The general construct of this problem in terms of graph theory is that the vertices of a graph represent the locations of the radio transmitters and the labels of the vertices represent the corresponding channels or frequencies assigned to the stations. A radio labeling of a simply connected graph G is a function $c:V(G) \rightarrow \mathbb{Z}_+$ such that for every two distinct vertices u and v of G, $d(u,v) + |c(u) - c(v)| \geq \text{diam}(G) + 1$. The radio number of a graph G is the smallest integer m for which a labeling c with $c(v) \leq m$ for all v in $V(G)$ exists. In this talk, we will work with the definition of radio labeling to establish radio numbers of certain types of graphs.