The UK TeX FAQ
Your 212 Questions Answered
version 2.5.5b, date 2001/07/19

Maintained by Robin Fairbairns

July 19, 2001

NOTE

This document is an updated and extended version of the FAQ article that was published as the December 1994 and 1995, and March 1999 editions of the UK TUG magazine Baskerville (which weren’t formatted like this).
The article is also available via the World Wide Web.

Contents

A Introduction ... 5

B The Background .. 6
 1 What is TeX? .. 6
 2 How should I pronounce “TeX”? .. 6
 3 What is METAFONT? ... 7
 4 What is MetaPost? ... 7
 5 How can I be sure it’s really TeX? .. 7
 6 Are TeX and friends Y2K compliant? .. 7
 7 What is L\TeX? .. 8
 8 What is \LaTeX\ 2\epsilon? .. 8
 9 How should I pronounce “\LaTeX(2\epsilon)”? ... 8
 10 Should I use Plain TeX or \LaTeX? ... 9
 11 What is CONTEXT? ... 9
 12 What are the AMS packages (\AMS\-TeX, etc.)? ... 9
 13 What is Eplain? .. 9
 14 What is Lollipop? ... 10
 15 What is Texinfo? ... 10
 16 If TeX is so good, how come it’s free? ... 10
 17 What is the future of TeX? ... 10
 18 TeX User Groups .. 11

C Documentation and Help .. 11
 19 Books on TeX and its relations .. 11
 20 Books on Type .. 13
 21 Where to find FAQs ... 13
 22 Where to get help ... 14
 23 \LaTeX\ Tutorials, etc. .. 14
 24 Learning to write \LaTeX\ classes and packages .. 15
 25 METAFONT and MetaPost Tutorials .. 15
 26 \BIB\TeX\ Documentation .. 15
 27 Where can I find the symbol for.. 16
 28 The \PCTeX\ manual ... 16
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>METAfont and MetaPost</td>
<td>37</td>
</tr>
<tr>
<td>72</td>
<td>Getting METAfont to do what you want</td>
<td>72</td>
</tr>
<tr>
<td>73</td>
<td>Which font files should be kept</td>
<td>73</td>
</tr>
<tr>
<td>74</td>
<td>Acquiring bitmap fonts</td>
<td>74</td>
</tr>
<tr>
<td>75</td>
<td>Making MetaPost output display in Ghostscript</td>
<td>75</td>
</tr>
<tr>
<td>38</td>
<td>Which font files should be kept</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>Making MetaPost output display in Ghostscript</td>
<td>39</td>
</tr>
<tr>
<td>39</td>
<td>Making MetaPost output display in Ghostscript</td>
<td>39</td>
</tr>
<tr>
<td>39</td>
<td>Making MetaPost output display in Ghostscript</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>PostScript and \TeX</td>
<td>40</td>
</tr>
<tr>
<td>76</td>
<td>Using PostScript fonts with \TeX</td>
<td>76</td>
</tr>
<tr>
<td>77</td>
<td>Previewing files using Type 1 fonts</td>
<td>77</td>
</tr>
<tr>
<td>78</td>
<td>\TeX font metric files for PostScript fonts</td>
<td>78</td>
</tr>
<tr>
<td>79</td>
<td>Deploying Type 1 fonts</td>
<td>79</td>
</tr>
<tr>
<td>80</td>
<td>Choice of scalable outline fonts</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>Including a PostScript figure in (\LaTeX)</td>
<td>81</td>
</tr>
<tr>
<td>46</td>
<td>Bibliographies</td>
<td>46</td>
</tr>
<tr>
<td>82</td>
<td>Using \BIBTeX with Plain \TeX</td>
<td>82</td>
</tr>
<tr>
<td>83</td>
<td>\BIBTeX doesn’t understand my lists of names</td>
<td>83</td>
</tr>
<tr>
<td>84</td>
<td>Separate bibliographies per chapter</td>
<td>84</td>
</tr>
<tr>
<td>85</td>
<td>Multiple bibliographies?</td>
<td>85</td>
</tr>
<tr>
<td>86</td>
<td>Putting bibliography entries in text</td>
<td>86</td>
</tr>
<tr>
<td>87</td>
<td>Sorting and compressing citations</td>
<td>87</td>
</tr>
<tr>
<td>88</td>
<td>Creating a bibliography style</td>
<td>88</td>
</tr>
<tr>
<td>89</td>
<td>Capitalisation in \BIBTeX</td>
<td>89</td>
</tr>
<tr>
<td>90</td>
<td>‘String too long’ in \BIBTeX</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>Multiple citations</td>
<td>91</td>
</tr>
<tr>
<td>50</td>
<td>Installing (\LaTeX) files</td>
<td>50</td>
</tr>
<tr>
<td>92</td>
<td>Installing a new package</td>
<td>92</td>
</tr>
<tr>
<td>93</td>
<td>Where to put new files</td>
<td>93</td>
</tr>
<tr>
<td>94</td>
<td>“Temporary” installation of (\LaTeX) files</td>
<td>94</td>
</tr>
<tr>
<td>52</td>
<td>Special sorts of typesetting</td>
<td>52</td>
</tr>
<tr>
<td>95</td>
<td>Drawing with \TeX</td>
<td>95</td>
</tr>
<tr>
<td>96</td>
<td>Double-spaced documents in \LaTeX</td>
<td>96</td>
</tr>
<tr>
<td>97</td>
<td>Formatting a thesis in \LaTeX</td>
<td>97</td>
</tr>
<tr>
<td>98</td>
<td>Flowing text around figures in \LaTeX</td>
<td>98</td>
</tr>
<tr>
<td>99</td>
<td>Alternative head- and footlines in \LaTeX</td>
<td>99</td>
</tr>
<tr>
<td>100</td>
<td>Including a file in verbatim in \LaTeX</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>Including line numbers in typeset output</td>
<td>101</td>
</tr>
<tr>
<td>102</td>
<td>Generating an index in (\LaTeX)</td>
<td>102</td>
</tr>
<tr>
<td>103</td>
<td>Typesetting URLs</td>
<td>103</td>
</tr>
<tr>
<td>104</td>
<td>Citing URLs with \BIBTeX</td>
<td>104</td>
</tr>
<tr>
<td>105</td>
<td>Typesetting music in \TeX</td>
<td>105</td>
</tr>
<tr>
<td>106</td>
<td>Drawing Feynman diagrams in \LaTeX</td>
<td>106</td>
</tr>
<tr>
<td>107</td>
<td>Better script fonts for maths</td>
<td>107</td>
</tr>
<tr>
<td>108</td>
<td>‘Watermarks’ on every page</td>
<td>108</td>
</tr>
<tr>
<td>109</td>
<td>Typesetting things in landscape orientation</td>
<td>109</td>
</tr>
<tr>
<td>110</td>
<td>Other “document font” sizes?</td>
<td>110</td>
</tr>
<tr>
<td>111</td>
<td>Changing the format of the Table of Contents</td>
<td>111</td>
</tr>
<tr>
<td>112</td>
<td>Style of section headings</td>
<td>112</td>
</tr>
<tr>
<td>113</td>
<td>Indent after section headings</td>
<td>113</td>
</tr>
<tr>
<td>114</td>
<td>The style of captions</td>
<td>114</td>
</tr>
<tr>
<td>115</td>
<td>The style of document titles</td>
<td>115</td>
</tr>
<tr>
<td>116</td>
<td>Multiple indexes</td>
<td>116</td>
</tr>
<tr>
<td>117</td>
<td>Zero paragraph indent</td>
<td>117</td>
</tr>
<tr>
<td>118</td>
<td>Set specifications and Dirac brackets</td>
<td>118</td>
</tr>
</tbody>
</table>
Q How do I do \texttt{X} in \LaTeX{} or \LTX{} 61
119 Proof environment .. 61
120 Symbols for the number sets 62
121 Roman theorems ... 62
122 Fancy enumeration lists 62
123 Unnumbered sections in the Table of Contents 63
124 Footnotes in tables ... 63
125 Footnotes in \LTX{} section headings 64
126 Footnotes in captions 64
127 Changing the margins in \LTX{} 64
128 Changing the space between letters 66
129 Conditional compilation 66
130 Setting bold Greek letters in \LTX{} 67
131 Defining a new log-like function in \LTX{} 67
132 Typesetting all those \TeX{}-related logos 68
133 \texttt{1-column abstract} in \texttt{2-column document} 68
134 Code listings in \LTX{} 69
135 Typesetting the Principal Value Integral Symbol 69
136 Using a new language with Babel 69
137 How to use the underscore character 70
138 How to get rid of page numbers 71
139 How to type an ‘@’ sign? 71
140 How to create crop marks 71
141 Putting things at fixed positions on the page 71
142 Wide figures in two-column documents 71
143 How to create a \texttt{\subsubsubsection} 72
144 What’s the name of this file 72
145 Stopping all hyphenation 73
146 Setting text ragged right 73
147 How to reduce list spacing 74
148 All the files used by this document 74
149 Marking changed parts of your document 75
150 Fixed-width tables .. 75
151 Bits of document from other directories 76

R Macro programming 76
152 Finding the width of a letter, word, or phrase 76
153 How to change \LTX{}’s “fixed names” 76
154 Changing the words \texttt{babel} uses 77
155 Running equation, figure and table numbering 77
156 Patching existing commands 78
157 \texttt{@} and @ in macro names 79
158 What’s the reason for ‘protection’? 79
159 \texttt{\edef} does not work with \texttt{\protect} 80
160 Optional arguments like \texttt{section} 80
161 Making labels from a counter 80
162 Finding if you’re on an odd or an even page 80
163 How to change the format of labels 81

S Typesetting particular types of documents 81
164 Setting papers for journals 81
165 A ‘report’ from lots of ‘article’s 81
166 Curriculum Vitae \texttt{(Resumé)} 82

T Things are Going Wrong... 82
167 My words aren’t being hyphenated 82
168 Weird hyphenation of words 83
169 (Merely) peculiar hyphenation 83
170 Accented words aren’t hyphenated 83
171 Enlarging \LaTeX{} .. 84
172 Moving tables and figures in \LTX{} 84
173 \texttt{\pagestyle{empty}} on first page in \LTX{} 85
This FAQ was prepared by the Committee of the UK \TeX Users’ Group (UK TUG) as a development of a regular posting to the Usenet newsgroup comp.text.tex that was maintained for some time by Bobby Bodenheimer. The first UK version was much re-arranged and corrected from the original, and little of Bodenheimer’s work now remains.

An hypertext translation of the FAQ has been made available on the World-Wide Web, via URL http://www.tex.ac.uk/faq

An alternative hypertext version is also to be found on the \TeX Live CD-ROM (see question 48).

A Introduction
Most members of the committee of UK TUG, over the years since 1994, have contributed to this FAQ to some extent. The following people, who have never been members of the committee, have also contributed help or advice: Donald Arseneau, Barbara Beeton, Karl Berry, Giuseppe Bilotta, Damion Cugley, Michael Dewey, Michael Downes, Anthony Goreham, Norman Gray, Eitan Gurari, John Hobby, Berthold Horn, Ian Hutchinson, Werner Icking, David Kastrap, Daniel Laukecking, Dick Nickalls, Ted Nieland, Pat Rau, Piet van Oostoom, Sanjoy Mahajan, Scott Pakin, Oren Patashnik, Carlos Santos, Joachim Schrod, Ulrik Vieth, Mike Vulis, Peter Wilson, Rick Zacccone and Reinhard Zierke.

Finding the Files

Unless otherwise specified, all files mentioned in this FAQ are available from a CTAN archive, or from one of their mirrors. Question 41 gives details of the CTAN archives, and how to retrieve files from them. If you don’t have access to the Internet, question 48 tells you of sources of CD-ROMs that offer snapshots of the archives.

The reader should also note that the first directory name of the path name of every file on CTAN has been elided from what follows, for the simple reason that it’s always the same (tex-archive/).

To avoid confusion, we’ve also elided the full stop\(^1\) from the end of any sentence whose last item is a path name (note that such sentences only occur at the end of paragraphs). Though the path names are set in a different font from running text, it’s not easy to distinguish the font of a single dot!

B The Background

1 What is T\(\text{e}\)X?

T\(\text{e}\)X is a typesetting system written by Donald E. Knuth, who says in the Preface to his book on T\(\text{e}\)X (see question 19) that it is “intended for the creation of beautiful books — and especially for books that contain a lot of mathematics”.

Knuth is Emeritus Professor of the Art of Computer Programming at Stanford University in California, USA. Knuth developed the first version of T\(\text{e}\)X in 1978 to deal with revisions to his series “the Art of Computer Programming”, but the idea proved popular and he produced a second version (in 1982) is the basis of what we use today.

Knuth developed a system of ‘literate programming’ to write T\(\text{e}\)X, and he provides the literate (WEB) source of T\(\text{e}\)X free of charge, together with tools for processing the WEB source into something that can be compiled and something that can be printed; there’s never any mystery about what T\(\text{e}\)X does. Furthermore, the WEB system provides mechanisms to port T\(\text{e}\)X to new operating systems and computers; and in order that one may have some confidence in the ports, Knuth supplied a test (see question 5) by means of which one may judge the fidelity of a T\(\text{e}\)X system. T\(\text{e}\)X and its documents are therefore highly portable.

T\(\text{e}\)X is a macro processor, and offers its users a powerful programming capability. For this reason, T\(\text{e}\)X on its own is a pretty difficult beast to deal with, so Knuth provided a package of macros for use with T\(\text{e}\)X called Plain T\(\text{e}\)X; Plain T\(\text{e}\)X is effectively the minimum set of macros one can usefully employ with T\(\text{e}\)X, together with some demonstration versions of higher-level commands (the latter are better regarded as models than used as-is). When people say they’re “programming in T\(\text{e}\)X”, they usually mean they’re programming in Plain T\(\text{e}\)X.

2 How should I pronounce “T\(\text{e}\)X”?

The ‘X’ stands for the Greek letter Chi (\(\chi\)), and is pronounced by English-speakers either a bit like the ‘ch’ in the Scots word ‘loch’ ([x] in the IPA) or like ‘k’. It definitely is not pronounced ‘ks’.

\(^1\)‘Full stop’ (British English)==‘period’ (American English)
What is METAFONT?

METAFONT was written by Knuth as a companion to \TeX{}; whereas \TeX{} defines the layout of glyphs on a page, METAFONT defines the shapes of the glyphs and the relations between them. METAFONT details the sizes of glyphs, for \TeX{}’s benefit, and details the rasters used to represent the glyphs, for the benefit of programs that will produce printed output as post processes after a run of \TeX{}.

METAFONT’s language for defining fonts permits the expression of several classes of things: first (of course), the simple geometry of the glyphs; second, the properties of the print engine for which the output is intended; and third, ‘meta’-information which can distinguish different design sizes of the same font, or the difference between two fonts that belong to the same (or related) families.

Knuth (and others) have designed a fair range of fonts using METAFONT, but font design using METAFONT is much more of a minority skill than is \TeX{} macro-writing. The complete \TeX{}-user nevertheless needs to be aware of METAFONT, and to be able to run METAFONT to generate personal copies of new fonts.

What is MetaPost?

The MetaPost system (by John Hobby) implements a picture-drawing language very much like that of METAFONT except that it outputs Encapsulated PostScript files instead of run-length-encoded bitmaps. MetaPost is a powerful language for producing figures for documents to be printed on PostScript printers, either directly or embedded in \LaTeX{} documents. It includes facilities for directly integrating \TeX{} text and mathematics with the graphics. The PostScript output is of such a simple form that MetaPost output files can be directly included in PDF documents (see question 208).

(Knuth tells us that he uses nothing else but MetaPost for diagrams in text that he is writing.)

Much of MetaPost’s source code was copied from METAFONT’s sources with Knuth’s permission.

How can I be sure it’s really \TeX{}?

\TeX{} (and METAFONT and MetaPost) are written in a ‘literate’ programming language called Web (see question 60) which is designed to be portable across a wide range of computer systems. How, then, is a new version of \TeX{} checked?

Of course, any sensible software implementor will have his own suite of tests to check that his software runs: those who port \TeX{} and its friends to other platforms do indeed perform such tests.

Knuth, however, provides a ‘conformance test’ for both \TeX{} (trip) and METAFONT (trap). He characterises these as ‘torture tests’: they are designed not to check the obvious things that ordinary typeset documents, or font designs, will exercise, but rather to explore small alleyways off the main path through the code of \TeX{}. They are, to the casual reader, pretty incomprehensible!

Once an implementation of \TeX{} has passed its trip, or and implementation of METAFONT has passed its trap, test it may reasonably be distributed as a working version.

Are \TeX{} and friends Y2K compliant?

Crashing: None of \TeX{}, METAFONT or MetaPost can themselves crash due to any change whatever in the date of any sort.

Timestamps: As Knuth delivers the sources, a 2-digit year is stored as the creation time for format files and that value is printed in logfiles. These items should not be of general concern, since the only use of the date format file is to produce the log output, and the log file is designed for human readers only.

Knuth’s distributed source does not designate the code, which generates this 2-digit date, as a valid area where implementations may differ. However, he announced in 1998 that implementators can alter this code without fear of being

\[^{2}\text{PDF}LaTeX{} cannot normally handle PostScript inclusions\]
accused of non-compliance. Nearly all implementations that are being actively maintained had been modified to generate 4-digit years in the format file and the log, by the end of 1998.

The \texttt{\textbackslash year} primitive: Certification of a \TeX implementation (see question 5) does not require that \texttt{\textbackslash year} return a meaningful value (which means that \TeX can, in principle, be implemented on platforms that don’t make the value of the clock available to user programs). The \texttt{\LaTeX{}book} (see question 19) defines \texttt{\textbackslash year} as “the current year of our Lord”, which is the only correct meaning for \texttt{\textbackslash year} for those implementations which can supply a meaningful value, which is to say nearly all of them.

In short, \TeX implementations should provide a value in \texttt{\textbackslash year} giving the 4-digit year Anno Domini, or the value 1776 if the platform does not support a date function.

Note that if the system itself fails to deliver a correct date to \TeX, then \texttt{\textbackslash year} will of course return an incorrect value. \TeX cannot be considered Y2K compliant, in this sense, on a system that is not itself Y2K compliant.

Macros: \TeX macros can in principle perform calculations on the basis of the value of \texttt{\textbackslash year}. The \LaTeX{} suite (see question 7) performs such calculations in a small number of places; the calculations performed in the current (supported) version of \LaTeX{} are known to be Y2K compliant.

Other macros and macro packages should be individually checked.

External software: Software such as DVI translators needs to be individually checked.

7 What is \LaTeX{}?

\LaTeX{} is a \TeX{} macro package, originally written by Leslie Lamport, that provides a document processing system. \LaTeX{} allows markup to describe the structure of a document, so that the user need not think about presentation. By using document classes and add-on packages, the same document can be produced in a variety of different layouts.

Lamport says that \LaTeX{} “represents a balance between functionality and ease of use”. This shows itself as a continual conflict that leads to the need for such things as FAQs: \LaTeX{} can meet most user requirements, but finding out how is often tricky.

8 What is \LaTeX{} 2\textepsilon{}?

Lamport’s last version of \LaTeX{} (\LaTeX{} 2.09, last updated in 1992) was superseded in 1994 by a new version (\LaTeX{} 2\textepsilon) written by the \LaTeX{} team (see question 205). \LaTeX{} 2\textepsilon{} is now the only readily-available version of \LaTeX{}, and draws together several threads of \LaTeX{} development from the later days of \LaTeX{} 2.09.

\LaTeX{} 2\textepsilon{} has several enhancements over \LaTeX{} 2.09, but they were all rather minor, with a view to continuity and stability rather than the “big push” that some had been expected from the team. \LaTeX{} 2\textepsilon{} continues to this day to offer a compatibility mode in which most files prepared for use with \LaTeX{} 2.09 will run (albeit with somewhat reduced performance). Differences between \LaTeX{} 2\textepsilon{} and \LaTeX{} 2.09 are outlined in a series of ‘guide’ files that are available in every \LaTeX{} distribution; the most important of these files is available on the Web as \url{http://www.tex.ac.uk/tex-archive/macros/latex/doc/html/usrguide/} and outlines the differences as seen by the ordinary writer of documents and of simple macros.

9 How should I pronounce “\LaTeX{}(2\textepsilon)”?

Lamport never recommended how one should pronounce \LaTeX{}, but a lot of people pronounce it ‘Lay \TeX{}’ or perhaps ‘Lah \TeX{}’ (with \TeX{} pronounced as the program itself; see question 2).

The ‘epsilon’ in \LaTeX{} 2\textepsilon{} is supposed to be suggestive of a small improvement over the old \LaTeX{} 2.09. Nevertheless, most people pronounce the name as ‘\LaTeX{}-two-ee’.
10 Should I use Plain \TeX{} or \LaTeX{}?

There’s no straightforward answer to this question. Many people swear by Plain \TeX{}, and produce highly respectable documents using it (Knuth is an example of this, of course). But equally, many people are happy to let someone else take the design decisions for them, accepting a small loss of flexibility in exchange for a saving of brain power.

The arguments around this topic can provoke huge amounts of noise and heat, without offering much by way of light; your best bet is to find out what those around you are using, and to go with the crowd. Later on, you can always switch your allegiance; don’t bother about it.

If you are preparing a manuscript for a publisher or journal, ask them what markup they want before you develop your own; many big publishers have developed their own \LaTeX{} styles for journals and books, and insist that authors stick closely to their markup.

11 What is \CT{}?

\CT{} is a macro package developed by Hans Hagen, originally to serve the needs of the Dutch firm, Pragma. It was designed with the same general-purpose aims as \LaTeX{}, but (being younger) reflects much more recent thinking about the structure of markup, etc. In particular, \CT{} can customise its markup to an author’s language (customising modules for Dutch, English and German are provided, at present).

\CT{} is well integrated, in all of its structure, with the needs of hypertext markup, and in particular with the facilities offered by PDF\TeX{} (see question 208). The default installation employs a version of \TeX{} built with both the PDF\TeX{} and \e{}-\TeX{} extensions, and makes good use of both.

\CT{} doesn’t yet have quite such a large developer community as does \LaTeX{}, but those developers who are active seem to have prodigious energy.

\CT{} distribution: macros/context

12 What are the AMS packages (\AMS-\TeX{}, etc.)?

\AMS-\TeX{} is a \TeX{} macro package, originally written by Michael Spivak for the American Mathematical Society (AMS) during 1983–1985. It is described in “The Joy of \TeX{}” by Michael D. Spivak (second edition, AMS, 1990, ISBN 0-821-82997-1). It is based on Plain \TeX{}, and provides many features for producing more professional-looking maths formulas with less burden on authors. It pays attention to the finer details of sizing and positioning that mathematical publishers care about. The aspects covered include multi-line displayed equations, equation numbering, ellipsis dots, matrices, double accents, multi-line subscripts, syntax checking (faster processing on initial error-checking \TeX{} runs), and other things.

As \LaTeX{} increased in popularity, authors asked to submit papers to the AMS in \LaTeX{}, and so the AMS developed \AMS-\LaTeX{}, which is a collection of \LaTeX{} packages and classes that offer authors most of the functionality of \AMS-\TeX{}.

13 What is Eplain?

The Eplain macro package expands on and extends the definitions in Plain \TeX{}. Eplain is not intended to provide “generic typesetting capabilities”, as do \LaTeX{} or Texinfo (see question 15). Instead, it provides definitions that are intended to be useful regardless of the high-level commands that you use when you actually prepare your manuscript.

For example, Eplain does not have a command \verb|\section|, which would format section headings in an “appropriate” way, as \LaTeX{}’s \verb|\section|. The philosophy of Eplain is that some people will always need or want to go beyond the macro designer’s idea of “appropriate”. Such canned macros are fine — as long as you are willing to accept the resulting output. If you don’t like the results, or if you are trying to match a different format, you are out of luck.

On the other hand, almost everyone would like capabilities such as cross-referencing by labels, so that you don’t have to put actual page numbers in the manuscript. Karl Berry, the author of Eplain, says he is not aware of any generally available macro packages that do not force their typographic style on an author, and yet provide such capabilities.
What is Lollipop?

Lollipop is a macro package written by Victor Eijkhout; it was used in the production of his book “T\TeX by Topic” (see question 19). The manual says of it:

Lollipop is ‘T\TeX made easy’. Lollipop is a macro package that functions as a toolbox for writing T\TeX macros. It was my intention to make macro writing so easy that implementing a fully new layout in T\TeX would become a matter of less than an hour for an average document, and that it would be a task that could be accomplished by someone with only a very basic training in T\TeX programming.

Lollipop is an attempt to make structured text formatting available for environments where previously only WYSIWYG packages could be used because adapting the layout is so much more easy with them than with traditional T\TeX macro packages.

The manual goes on to talk of ambitions to “capture some of the L\AT\TeX market share”; it’s a very witty package, but little sign of it taking over from L\AT\TeX is detectable... An article about Lollipop appeared in TUGboat 13(3).

What is Texinfo?

Texinfo is a documentation system that uses one source file to produce both on-line information and printed output. So instead of writing two different documents, one for the on-line help and the other for a typeset manual, you need write only one document source file. When the work is revised, you need only revise one document. You can read the on-line information, known as an “Info file”, with an Info documentation-reading program. By convention, Texinfo source files end with a .texi or .texinfo extension. You can write and format Texinfo files into Info files within GNU emacs, and read them using the emacs Info reader. If you do not have emacs, you can format Texinfo files into Info files using makeinfo and read them using info.

The Texinfo distribution, including a set of T\TeX macros for formatting Texinfo files is available as macros/texinfo/texinfo

If T\TeX is so good, how come it’s free?

It’s free because Knuth chose to make it so. He is nevertheless apparently happy that others should earn money by selling T\TeX-based services and products. While several valuable T\TeX-related tools and packages are offered subject to restrictions imposed by the GNU General Public Licence (“Copyleft”), T\TeX itself is not subject to Copyleft.

There are commercial versions of T\TeX available; for some users, it’s reassuring to have paid support. What is more, some of the commercial implementations have features that are not available in free versions. (The reverse is also true: some free implementations have features not available commercially.)

This FAQ concentrates on ‘free’ distributions of T\TeX, but we do at least list the major vendors (see question 51).

What is the future of T\TeX?

Knuth has declared that he will do no further development of T\TeX; he will continue to fix any bugs that are reported to him (though bugs are rare). This decision was made soon after T\TeX version 3.0 was released; at each bug-fix release the version number acquires one more digit, so that it tends to the limit π (at the time of writing, Knuth’s latest release is version 3.14159). Knuth wants T\TeX to be frozen at version π when he dies; thereafter, no further changes may be made to Knuth’s source. (A similar rule is applied to METAFONT; its version number tends to the limit e, and currently stands at 2.718.)

There are projects (some of them long-term projects: see, for example, question 205) to build substantial new macro packages based on T\TeX. For the even longer term, there are various projects to build a successor to T\TeX; see questions 206 and 207.
There has been a \TeX User Group since very near the time \TeX first appeared. That first group, TUG, is still active and its journal \textit{TUGboat} continues in publication (4 issues a year) with articles about \TeX, METAFONT and related technologies, and about document design, processing and production. TUG holds a yearly conference, whose proceedings are published in \textit{TUGboat}.

TUG’s web site is a valuable resource for all sorts of \TeX-related matters, such as details of \TeX software, and lists of \TeX vendors and \TeX consultants. Back articles from \textit{TUGboat} are slowly (subject to copyright issues, etc.) making their way to the site, too.

Some time ago, TUG established a “technical council”, whose task was to oversee the development of \TeXnical projects. Most such projects nowadays go on their way without any support from TUG, but TUG’s web site lists its Technical Working Groups (TWGs).

TUG has a reasonable claim to be considered a world-wide organisation, but there are many national and regional user groups, too; TUG’s web site maintains a list of “Local User Groups” (LUGs).

Contact TUG itself via:

\TeX Users Group
1466 NW Front Avenue, Suite 3141
Portland, OR 97209
USA
Tel: +1 503-223-9994
Fax: +1 503-223-3960
Email: tug@mail.tug.org
Web: http://www.tug.org/

C Documentation and Help

19 Books on \TeX and its relations

While Knuth’s book is the definitive reference for \TeX, there are other books covering \TeX:

\textit{A Beginner’s Book of \TeX} by Raymond Seroul and Silvio Levy, (Springer Verlag, 1992, ISBN 0-387-97562-4)

\textit{Introduction to \TeX} by Norbert Schwarz (Addison-Wesley, 1989, ISBN 0-201-51141-X)

\textit{A Plain \TeX Primer} by Malcolm Clark (Oxford University Press, 1993, ISBNs 0-198-53724-7 (hardback) and 0-198-53784-0 (paperback))

\textit{\TeX for the Beginner} by Wynter Snow (Addison-Wesley, 1992, ISBN 0-201-54799-6)

\textit{\TeX: Starting from 1}3 by Michael Doob (Springer Verlag, 1993, ISBN 3-540-56441-1)

3That’s ‘Starting from Square One’

A collection of Knuth’s publications about typography has recently been published:

and in late 2000, a “Millennium Boxed Set” of all 5 volumes of Knuth’s “Computers and Typesetting” series (about $\TeX{}$ and \METAFONT) was published by Addison Wesley:

For \La\TeX{}, see:

The $\La\TeX{}$ Companion by Michel Goossens, Frank Mittelbach, and Alexander Samarin (Addison-Wesley, 1993, ISBN 0-201-54199-8)

The $\La\TeX{}$ Graphics Companion: Illustrating documents with $\TeX{}$ and PostScript by Michel Goossens, Sebastian Rahtz and Frank Mittelbach (Addison-Wesley, 1997, ISBN 0-201-85469-4)

The $\La\TeX{}$ Web Companion Introducing $\TeX{}$, HTML and XML by Michel Goossens and Sebastian Rahtz (Addison-Wesley, 1999, ISBN 0-201-43311-7)

Math into $\La\TeX{}$: An Introduction to $\La\TeX{}$ and $\AMS-\La\TeX{}$ by George Grätzer (third edition Birkhäuser and Springer Verlag, 2000, ISBN 0-8176-4431-9, ISBN 3-7643-4131-9)

First Steps in $\La\TeX{}$ by George Grätzer (Birkhäuser, 1999, ISBN 0-8176-4132-7)

$\La\TeX{}$ for Linux: A Vade Mecum by Bernice Sacks Lipkin (Springer-Verlag, 1999, ISBN 0-387-98708-8, second printing)

A list of errata for the first printing is available from: \url{http://www.springer-ny.com/catalog/np/jan99np/0-387-98708-8.html}

A sample of George Grätzer’s book, in Adobe Acrobat format, is also available (\url{info/mil/mil.pdf}).

Example files for the $\La\TeX$ Graphics and Web Companions are available in \url{info/lgc} (Graphics) and \url{info/lwc} (Web). Example files for George Grätzer’s ‘First Steps’ are available in \url{info/FirstSteps}

The list for \METAFONT{} is rather short:

Alan Hoenig’s ‘$\TeX{}$ Unbound’ includes some discussion and examples of using \METAFONT{}.

This list only covers books in English: UK TUG cannot hope to maintain a list of books in languages other than our own.
20 Books on Type

The following is a partial listing of books on typography in general. Of these, Bringhurst seems to be the one most often recommended.

There are many catalogues of type specimens but the following books provide a more interesting overall view of types in general and some of their history.

The above lists are limited to books published in English. Typographic styles are somewhat language-dependent, and similarly the ‘interesting’ fonts depend on the particular writing system involved.

21 Where to find FAQs

Bobby Bodenheimer’s article, from which this FAQ was developed, used to be posted (nominally monthly) to newsgroup comp.text.tex and cross-posted to newsgroups news.answers and comp.answers. The (long obsolete) last posted copy of that article is kept on CTAN for auld lang syne; it is no longer kept in the news.answers archives.

A version of the present FAQ may be browsed via the World-Wide Web, and its sources are available from CTAN.

Another excellent information source, available in English, is the [*\TeX* navigator](http://www.ctan.org/faq).

Both the Francophone [*\TeX* usergroup](http://www.ctan.org/faq/de-tex-faq/) and the Czech/Slovak usergroup CS-TUG have published translations of this FAQ, with extensions appropriate to their languages.

Other non-English FAQs are available:

German Posted regularly to de.comp.tex, and archived on CTAN; the FAQ also appears at http://www.dante.de/faq/de-tex-faq/

French Posted regularly to fr.comp.text.tex, and archived on CTAN.

Spanish See http://apolo.us.es/CervanTeX/FAQ/
Where to get help

First ... read any FAQ you can find. (Which is what you're doing now, isn't it?)

An ambitious FAQ-like project to collect all \TeX{}-related information into one place is under way at http://www.ctv.es/USERS/irmina/TeEncontreX.html; as with any FAQ, this project needs the support and help of all users — as yet, it carries an incomplete set of answers to potential questions. The sources of the package (including a complete set of \texttt{html} files) are available: info/spanish/TeEncontreX

The tutorials and other on-line documentation (see question 23) can get you started but for more in-depth understanding you should get and read at least one of the many good books on the subject (see question 19). The definitive source for (\La)\TeX{} is the source code itself, but that is not something to be approached lightly (if at all).

If you are seeking a particular package or program, look on your own system first: you might already have it — the better \TeX{} distributions contain a wide range of supporting material.

If you have access to the internet, and in particular newsgroups, then (\La)\TeX{} discussions, including \texttt{METAFONT} and MetaPost, are on \texttt{comp.text.tex}. It is best to spend a little time familiarising yourself with the current threads before asking a question. The group is normally very responsive but asking a question that has just been answered is likely to dampen people’s enthusiasm to help you.

http://groups.google.com/ archives Usenet news discussions, and \texttt{comp.text.tex} may be found there; the archive is still occasionally helpful, particularly for examining recent threads. In the good old days, Deja (Google’s predecessors) used to offer Usenet posting; Google don’t allow posting, so if your internet access doesn’t allow it you need to search for another site that offers the facility.

The few people who can’t use the World Wide Web, can’t access Usenet news, but can use electronic mail can seek help through mailing lists.

The \TeX{}xhax digest is operated as a mailing list. Send a message ‘subscribe texhax’ to texhax-request@tex.ac.uk to join it. Its turn-around is not rapid, but questions submitted to it do eventually get answered.

Many mailing lists exist that cover some small part of the \TeX{} arena. A good source of pointers is http://www.tug.org/

Announcements of \TeX{}-related installations on the CTAN archives are sent to the mailing list ctan-ann. Subscribe to the list by sending a message ‘subscribe ctan-ann <your name>’ to listserv@urz.Uni-Heidelberg.de

Issues related to \texttt{METAFONT} (and, increasingly, MetaPost) are discussed on the \texttt{metafont} mailing list; subscribe by sending a message ‘subscribe metafont <your name>’ to listserv@ens.fr

Several other \TeX{}-related lists may be accessed via listserv@urz.uni-heidelberg.de. Send a message containing the line ‘help’ to this address.

23 (\La)\TeX{} Tutorials, etc.

Some very fine tutorials have been written, over the years. Michael Doob’s splendid ‘Gentle Introduction’ to Plain \TeX{} has been stable for a very long time.

More dynamic is Tobias Oetiker’s ‘(Not so) Short Introduction to (\La)\TeX{} \texttt{2e}’, which is regularly updated, as people suggest better ways of explaining things, etc. The introduction has been translated into several languages other than its original English.

A recent entrant is Harvey Greenberg’s ‘Simplified Introduction to \texttt{E\TeX}’; this was written for a lecture course, and is available on CTAN (in PostScript only, unfortunately).

Reference material is somewhat more difficult to come by. A sterling example is set by David Bausum’s list of \TeX{} primitives.
24 Learning to write \LaTeX\ classes and packages

There’s nothing particularly magic about the commands you use when writing a package, so you can simply bundle up a set of \LaTeX\ \texttt{\texttt{\texttt{\texttt{(re)newcommand}}} and \texttt{\texttt{\texttt{|re)newenvironment}}} commands, put them in a file \texttt{package.sty} and you have a package.

However, any but the most trivial package will require rather more sophistication. Some details of \LaTeX\ commands for the job are to be found in ‘\LaTeX\ \varepsilon\ for class and package writers’ (\url{http://www.tex.ac.uk/tex-archive/macros/latex/doc/html/clsguide}: the \LaTeX\ source of this document appears in the \LaTeX\ distribution). Beyond this, a good knowledge of \TeX\ itself is valuable. With such knowledge it is possible to use the documented source of \LaTeX\ as reference material (dedicated authors will acquaint themselves with the source as a matter of course). A complete set of the documented source of \LaTeX\ may be prepared by processing the file \texttt{source2e.tex} in the \LaTeX\ distribution.

Writing good classes is not easy; it’s a good idea to read some established ones (\texttt{\texttt{\texttt{classes.dtx}}}, for example, produces the standard classes other than \texttt{\texttt{letter}}; and may itself be formatted with \LaTeX\). Classes that are not part of the distribution are commonly based on ones that are, and start by loading the standard class with \texttt{\texttt{\texttt{|LoadClass}}} — an example of this technique may be seen in \texttt{ltxguide.cls}:

\begin{itemize}
\item \texttt{classes.dtx}: \url{macros/latex/base/classes.dtx}
\item \texttt{ltxguide.cls}: \url{macros/latex/base/ltxguide.cls}
\item \texttt{source2e.tex}: \url{macros/latex/base/source2e.tex}
\end{itemize}

25 \textsc{Metafont} and MetaPost Tutorials

Unfortunately there appear to be no tutorials on how to use \textsc{Metafont}, except for the information provided by Knuth. There are, though, a couple of articles on how to run both \textsc{Metafont} and MetaPost.

Geoffrey Tobin has provided \textit{Metafont for Beginners} (see question 72). This describes how the \textsc{Metafont} system works and how to avoid some of the potential pitfalls.

Peter Wilson’s \textit{Some Experiences in Running Metafont and MetaPost} offers the benefit of Peter’s experience (he has designed a number of ‘historical’ fonts using \textsc{Metafont}). On the \textsc{Metafont} side the article is more geared towards testing and installing new \textsc{Metafont} fonts than on the system, while on the other side it describes how to use MetaPost illustrations in \LaTeX\ and PDF\LaTeX\ documents, with an emphasis on how to use appropriate fonts for any text or mathematics.

Hans Hagen (of Con\TeX\ fame) offers a MetaPost tutorial called MetaFun. It may be found on his company’s MetaPost page.

\textit{Beginners’ guide}: \url{info/metafont-for-beginners.tex}

\textit{Peter Wilson’s “experiences”}: \url{info/metafp.ps} (PostScript) or \url{info/metafp.pdf} (PDF format)

26 \textsc{Biblatex} Documentation

\textsc{Biblatex}, a program originally designed to produce bibliographies in conjunction with \LaTeX, is explained in Section 4.3 and Appendix B of Leslie Lamport’s \LaTeX\ manual (see question 19). The document “\texttt{\texttt{\texttt{Biblatexing}}}”, contained in the file \texttt{btxdoc.tex}, gives a more complete description. \textit{The \LaTeX\ Companion} (see question 19) also has information on \textsc{Biblatex} and writing \textsc{Biblatex} style files.

The document “Designing \textsc{Biblatex} Styles”, contained in the file \texttt{btxhak.tex}, explains the postfix stack-based language used to write \textsc{Biblatex} styles (.bst files). The file \texttt{btxbst.doc} is the template for the four standard styles (\texttt{plain}, \texttt{abbrv}, \texttt{alpha}, \texttt{unsrt}). It also contains their documentation. The complete \textsc{Biblatex} documentation set (including the files above) is available on CTAN.
There is a Unix BibTeX man page in the web2c package (see question 49). Any copy you may find of a man page written in 1985 (before “BibTeXing” and “Designing BibTeX Styles” appeared) is obsolete, and should be thrown away.\footnote{Or submitted for inclusion in a museum dedicated to the history of computing: the stricture was conceivably reasonable in the first version of this FAQ…}

BibTeX documentation: \url{biblio/bibtex/distrib/doc}

27 Where can I find the symbol for…

There is a wide range of symbols available for use with \TeX{}, most of which are not shown (or even mentioned) in (La)\TeX{} books. The Comprehensive \TeX{} Symbol List (by Scott Pakin \textit{et al.}) illustrates over 2000 symbols, and details the commands and packages needed to produce them.

\textit{Symbol List}: Browse \url{info/symbols/comprehensive}; there are processed versions in both PostScript and PDF forms for both A4 and letter paper.

28 The \PicTeX{} manual

\PicTeX{} is a set of macros by Michael Wichura for drawing diagrams and pictures. The macros are freely available; however, the \PicTeX{} manual itself is not free. Unfortunately, TUG is no longer able to supply copies of the manual (as it once did), and it is now available only through Personal \TeX{} Inc, the vendors of PCTeX (\url{http://www.pctex.com/}). The manual is \textit{not} available electronically.

\texttt{picTeX}: \url{graphics/pictex}

D Bits and pieces of \TeX{}

29 What is a DVI file?

A DVI file (that is, a file with the type or extension \texttt{.dvi}) is \TeX{}’s main output file, using \TeX{} in its broadest sense to include IS\TeX{}, etc. ‘DVI’ is supposed to be an acronym for DeVice-Independent, meaning that the file can be printed on almost any kind of typographic output device. The DVI file is designed to be read by a driver (see question 30) to produce further output designed specifically for a particular printer (e.g., a LaserJet) or to be used as input to a previewer for display on a computer screen. DVI files use \TeX{}’s internal coding; a \TeX{} input file should produce the same DVI file regardless of which implementation of \TeX{} is used to produce it.

A DVI file contains all the information that is needed for printing or previewing except for the actual bitmaps or outlines of fonts, and possibly material to be introduced by means of \texttt{\special} commands (see question 34).

The canonical reference for the structure of a DVI file is the source of \texttt{dvitype}.

\texttt{dvitype}: \url{systems/knuth/texware/dvitype.web}

30 What is a driver?

A driver is a program that takes as input a DVI file (see question 29) and (usually) produces a file that can be sent to a typographic output device, called a printer for short.

A driver will usually be specific to a particular printer, although any PostScript printer ought to be able to print the output from a PostScript driver.

As well as the DVI file, the driver needs font information. Font information may be held as bitmaps or as outlines, or simply as a set of pointers into the fonts that the printer itself ‘has’. Each driver will expect the font information in a particular form. For more information on the forms of fonts, see questions 31, 32, 33 and 76.
31 What are PK files?

PK files (packed raster) contain font bitmaps. The output from METAFONT (see question 72) includes a generic font (GF) file and the utility gftopk produces the PK file from that. There are a lot of PK files, as one is needed for each font, that is each magnification (size) of each design (point) size for each weight for each family. Further, since the PK files for one printer do not necessarily work well for another, the whole set needs to be duplicated for each printer type at a site. As a result, they are often held in an elaborate directory structure, or in ‘font library files’, to regularise access.

32 What are TFM files?

TFM stands for \TeX{} font metrics, and TFM files hold information about the sizes of the characters of the font in question, and about ligatures and kerns within that font. One TFM file is needed for each font used by \TeX{}, that is for each design (point) size for each weight for each family; one TFM file serves for all magnifications, so that there are (typically) fewer TFM files than there are PK files. The important point is that TFM files are used by \TeX{} (\LaTeX{}, etc.), but are not, generally, needed by the printer driver.

33 Virtual fonts

Virtual fonts for \TeX{} were first implemented by David Fuchs in the early days of \TeX{}, but for most people they started when Knuth redefined the format, and wrote some support software, in 1989 (he published an article in \textit{TUGboat} at the time, and a copy is available on CTAN). Virtual fonts provide a way of telling \TeX{} about something more complicated than just a one-to-one character mapping. The entities you define in a virtual font look like characters to \TeX{} (they appear with their sizes in a font metric file), but the DVI processor may expand them to something quite different. You can use this facility just to remap characters, to make a composite font with glyphs drawn from several sources, or to build up an effect in arbitrarily complicated ways — a virtual font may contain anything which is legal in a DVI file. In practice, the most common use of virtual fonts is to remap PostScript fonts (see question 78) or to build ‘fake’ maths fonts.

It is important to realise that \TeX{} itself does not see virtual fonts; for every virtual font read by the DVI driver there is a corresponding TFM file read by \TeX{}. Virtual fonts are normally created in a single ASCII \texttt{vpl} (Virtual Property List) file, which includes both sets of information. The \texttt{vptovf} program is then used to the create the binary TFM and VF files. The commonest way (nowadays) of generating \texttt{vpl} files is to use the \texttt{fontinst} package, which is described in detail in question 78. \texttt{qdtexvpl} is another utility for creating ad-hoc virtual fonts.

\begin{itemize}
\item \texttt{fontinst}: \texttt{fonts/utilities/fontinst}
\item Knuth on virtual fonts: \texttt{info/virtual-fonts.knuth}
\item \texttt{qdtexvpl}: \texttt{fonts/utilities/qdtexvpl}
\end{itemize}

34 \texttt{\special} commands

\TeX{} provides the means to express things that device drivers can do, but about which \TeX{} itself knows nothing. For example, \TeX{} itself knows nothing about how to include PostScript figures into documents, or how to set the colour of printed text; but some device drivers do.

Such things are introduced to your document by means of \texttt{\special} commands; all that \TeX{} does with these commands is to expand their arguments and then pass the command to the DVI file. In most cases, there are macro packages provided (often with the driver) that provide a comprehensible interface to the \texttt{\special}: for example, there’s little point including a figure if you leave no gap for it in your text, and changing colour proves to be a particularly fraught operation that requires real wizardry. \LaTeX{} 2\texttt{e} has standard graphics and colour packages that make file inclusion, rotation, scaling and colour via \texttt{\specials} all easy.

The allowable arguments of \texttt{\special} depend on the device driver you’re using. Apart from the examples above, there are \texttt{\special} commands in the \texttt{cm\TeX{}X} drivers.
35 Documented \LaTeX\ sources (\.dtx files)
\LaTeX\ sources (\.dtx files) and many support macro packages, are now written in a literate programming style (see question 60), with source and documentation in the same file. This format, known as ‘doc’, was originated by Frank Mittelbach. The documented sources conventionally have the suffix .dtx, and should normally be stripped of documentation before use with \LaTeX. Alternatively you can run \LaTeX\ on a .dtx file to produce a nicely formatted version of the documented code. An installation script (with suffix .ins) is usually provided, which needs the standard \LaTeX\ docstrip package (among other things, the installation process strips all the comments that make up the documentation for speed when loading the file into a running \LaTeX\ system). Several packages can be included in one .dtx file, with conditional sections, and there facilities for indices of macros etc. Anyone can write .dtx files; the format is explained in The \LaTeX\ Companion (see question 19). There are no programs yet to assist in composition.

What are encodings?
Let’s start by defining two concepts, the character and the glyph. The character is the abstract idea of the ‘atom’ of a language or other dialogue: so it might be a letter in an alphabetic language, a syllable in a syllabic language, or an ideogram in an ideographic language. The glyph is the mark created on screen or paper which represents a character. Of course, if reading is to be possible, there must be some agreed relationship between the glyph and the character, so while the precise shape of the glyph can be affected by many other factors, such as the capabilities of the writing medium and the designer’s style, the essence of the underlying character must be retained.

Whenever a computer has to represent characters, someone has to define the relationship between a set of numbers and the characters they represent. This is the essence of an encoding: it is a mapping between a set of numbers and a set of things to be represented.

\LaTeX\ of course deals in encoded characters all the time: the characters presented to it in its input are encoded, and it emits encoded characters in its DVI (or PDF) output. These encodings have rather different properties.

The \LaTeX\ input stream was pretty unruly back in the days when Knuth first implemented the language. Knuth himself prepared documents on terminals that produced all sorts of odd characters, and as a result \LaTeX\ contains some provision for translating the input encoding to something regular. Nowadays, the operating system translates keystrokes into a code appropriate for the user’s language: the encoding used is often a national or international standard, though many operating systems use “code pages” defined by MicroSoft. These standards and code pages often contain characters that can’t appear in the \LaTeX\ system’s input stream. Somehow, these characters have to be dealt with — so an input character like “é” needs to be interpreted by \LaTeX\ in a way that that at least mimics the way it interprets “\'e”.

The \LaTeX\ output stream is in a somewhat different situation: characters in it are to be used to select glyphs from the fonts to be used. Thus the encoding of the output stream is notionally a font encoding (though the font in question may be a virtual one — see question 33). In principle, a fair bit of what appears in the output stream could be direct transcription of what arrived in the input, but the output stream also contains the product of commands in the input, and translations of the input such as ligatures like fi⇒“fi”.

Font encodings became a hot topic when the Cork encoding (see question 38) appeared, because of the possibility of suppressing the use of \accent\ commands in the output stream (and hence improving the quality of the hyphenation of text in inflected languages, which is interrupted by the \accent\ commands — see question 37). To take advantage of the diacriticised characters represented in the fonts, it is necessary
to arrange that whenever the command sequence \texttt{command sequence "\'e"} has been
input (explicitly, or implicitly via the sort of mapping of input mentioned above), the
code that codes the position of the “é” glyph is used.

Thus we could have the odd arrangement that the diacriticised character in the \TeX
input stream is translated into \TeX commands that would generate something looking
like the input character; this sequence of \TeX commands is then translated back again
into a single diacriticised glyph as the output is created. This is in fact precisely what
the \LaTeX packages \texttt{inputenc} and \texttt{fontenc} do, if operated in tandem on (most) characters
in the ISO Latin-1 input encoding and the T1 font encoding. At first sight, it seems
eccentric to have the first package do a thing, and the second precisely undo it, but it
doesn’t always happen that way: most font encodings can’t match the corresponding
input encoding nearly so well, and the two packages provide the sort of symmetry the
\LaTeX system needs.

37 How does hyphenation work in \TeX?

Everyone knows what hyphenation is: we see it in most books we read, and (if we’re
alert) often spot ridiculous mis-hyphenation from time to time (at one time, British
newspapers were a fertile source).

Hyphenation styles are culturally-determined, and the same language may be hy-
phenated differently in different countries — for example, even British and American
styles of hyphenation of English are very different. As a result, a typesetting system
that is not restricted to a single language at a single locale needs to be able to change
its hyphenation rules from time to time.

\TeX uses a pretty good system for hyphenation (originally designed by Frank
Liang), and while it’s capable of missing “sensible” hyphenation points, it seldom
selects grossly wrong ones. The algorithm matches candidates for hyphenation against
a set of “hyphenation patterns”. The candidates for hyphenation must be sequences of
letters (or other single characters that \TeX may be persuaded to think of as letters) —
things such as \TeX’s \texttt{\accent} primitive interrupt hyphenation.

Sets of hyphenation patterns are usually derived from analysis of a list of valid
hyphenations (the process of derivation, using a tool called \texttt{patgen}, is not ordinarily a
participatory sport).

The patterns for the languages a \TeX system is going to deal with may only be
loaded when the system is installed. To change the set of languages, a partial reinstal-
lation (see question \texttt{136}) is necessary.

\TeX provides two “user-level” commands for control of hyphenation: \texttt{\language}
(which selects a hyphenation style), and \texttt{\hyphenation} (which gives explicit instruc-
tions to the hyphenation engine, overriding the effect of the patterns).

The ordinary \LaTeX user need not worry about \texttt{\language}, since it is very thor-
oughly managed by the \texttt{babel} package; use of \texttt{\hyphenation} is discussed in ques-
tion \texttt{167}.

38 What are the EC fonts?

A font consists of a number of \textit{glyphs}. In order that the glyphs may be printed, they are
encoded (see question \texttt{36}), and the encoding is used as an index into tables within the
font. For various reasons, Knuth chose deeply eccentric encodings for his Computer
Modern family of fonts; in particular, he chose different encodings for different fonts,
so that the application using the fonts has to remember which font of the family it’s
using before selecting a particular glyph.

When \TeX version 3 arrived, most of the excuses for the eccentricity of Knuth’s en-
codings went away, and at TUG’s Cork meeting, an encoding for a set of 256 glyphs, for
use in \TeX text, was defined. The intention was that these glyphs should cover ‘most’
European languages that use Latin alphabets, in the sense of including all accented
letters needed. (Knuth’s CMR fonts missed things necessary for Icelandic, Polish and
Sami, for example, but the Cork fonts have them. Even Cork’s coverage isn’t complete:
it misses letters from Romanian and Welsh, at least.) \TeX refers to the Cork encoding
as T1, and provides the means to use fonts thus encoded to avoid problems with the
interaction of accents and hyphenation (see question \texttt{170}).
The only METAFONT-fonts that conform to the Cork encoding are the EC fonts. They look CM-like, though their metrics differ from CM-font metrics in several areas. The fonts are now regarded as ‘stable’ (in the same sense that the CM fonts are stable: their metrics are unlikely ever to change). Their serious disadvantages for the casual user are their size (each EC font is roughly twice the size of the corresponding CM font), and the unavailability of free Adobe type 1 versions, so that PDF produced using them is inevitably bad (see question 70). (Note, however, that several commercial suppliers offer EC or EC-equivalent fonts in type 1 or TrueType form — see question 51.) What’s more, until corresponding fonts for mathematics are produced, the CM fonts must be retained because some mathematical symbols are drawn from text fonts in the CM encodings.

The EC fonts are distributed with a set of ‘Text Companion’ (TC) fonts that provide glyphs for symbols commonly used in text. The TC fonts are encoded according to the TEx TS1 encoding, and are not viewed as ‘stable’ in the same way as are the EC fonts are.

The Cork encoding is also implemented by virtual fonts provided in the PSNFSS system (see question 76), for PostScript fonts, and also by the txfonts and pxfonts font packages (see question 80).

EC and TC fonts: fonts/ec

39 What is the TDS?

TDS stands for the TEx Directory Structure, which is a standard way of organising all the TEx-related files on a computer system.

Most modern distributions conform to the TDS, which provides for both a ‘standard’ hierarchy and a ‘local’ hierarchy. The TDS reserves the name texmf as the name of the root directory (folder) of the hierarchies. Files supplied as part of the distribution are put into the standard hierarchy. The location of the standard hierarchy is system dependent, but on a Unix system it might be at /usr/local/texmf, or /usr/local/share/texmf, or /opt/texmf, or a similar location, but in each case the TEx files will be under the /texmf subdirectory.

There can be multiple ‘local’ hierarchies in which additional files can be put. In the extreme an installation can have a local hierarchy and each user can also have an individual local hierarchy. The location of any local hierarchy is not only system dependent but also user dependent. Again, though, all files should be put under a local /texmf directory.

TDS specification: tds/draft-standard/tds-0.9996

40 What is “Encapsulated PostScript”

PostScript has over the years become a lingua franca of powerful printers; since PostScript is also a powerful graphical programming language, it is commonly used as an output medium for drawing (and other) packages.

However, since PostScript is such a powerful language, some rules need to be imposed, so that the output drawing may be included in a document as a figure without “leaking” (and thereby destroying the surrounding document, or failing to draw at all).

Appendix H of the PostScript Language Reference Manual (second and subsequent editions), specifies a set of rules for PostScript to be used as figures in this way. The important features are:

• certain “structured comments” are required; important ones are the identification of the file type, and information about the “bounding box” of the figure (i.e., the minimum rectangle enclosing it);
• some commands are forbidden — for example, a showpage command will cause the image to disappear, in most TEx-output environments; and
• “preview information” is permitted, for the benefit of things such as word processors that don’t have the ability to draw PostScript in their own right — this preview information may be in any one of a number of system-specific formats, and any viewing program may choose to ignore it.

A PostScript figure that conforms to these rules is said to be in “Encapsulated PostScript” format. Most (E)TEx packages for including PostScript are structured
to use Encapsulated PostScript; which of course leads to much hilarity as exasperated \LaTeX users struggle to cope with the output of drawing software whose authors don’t know the rules.

E Acquiring the Software

41 Repositories of \TeX material

To aid the archiving and retrieval of of \TeX-related files, a TUG working group developed the Comprehensive \TeX Archive Network (CTAN). Each CTAN site has identical material, and maintains authoritative versions of its material. These collections are extensive; in particular, almost everything mentioned in this FAQ is archived at the CTAN sites (see the lists of software at the end of the questions).

The CTAN sites are currently dante.ctan.org (Mainz, Germany), cam.ctan.org (Cambridge, UK) and tug.ctan.org (Colchester, Vermont, USA). The organisation of \TeX files on all CTAN sites is identical and starts at tex-archive/. Each CTAN node may also be accessed via the Web at URLs http://www.dante.de/tex-archive, http://www.tex.ac.uk/tex-archive and http://www.ctan.org/tex-archive respectively; not all CTAN mirrors are Web-accessible. As a matter of course, to reduce network load, please use the CTAN site or mirror closest to you.

A complete and current list of CTAN sites and known mirrors can be obtained by using the \texttt{finger} utility on ‘user’ ctan@cam.ctan.org, ctan@dante.ctan.org or ctan@tug.ctan.org; it is also available as file CTAN.sites

For details of how to find files at CTAN sites, see questions 45 (searching by ftp) and 46 (Web searching).

The email servers ftpmail@dante.ctan.org and ftpmail@tug.ctan.org provide an ftp-like interface through mail. Send a message containing just the line ‘help’ to your nearest server, for details of use.

The \TeX user who has no access to any sort of network may buy a copy of the archive on CD-ROM (see question 48).

42 What’s the CTAN nonfree tree?

The CTAN archives are currently restructuring their holdings so that files that are ‘not free’ are held in a separate tree. The definition of what is ‘free’ (for this purpose) is influenced by, but not exactly the same as the Debian Free Software Guidelines (DFSG). Material is placed on the nonfree tree if it is not freely-usable (e.g., if the material is shareware, commercial, or if its usage is not permitted in certain domains at all, or without payment). Users of the archive should check that they are entitled to use material they have retrieved from the nonfree tree.

The Catalogue (one of the prime sources for finding \TeX-related material via web search — see question 46) lists the licence details in each entry in its lists. The catalogue also provides For details of the licence categories, see its list of licences.

43 Contributing a file to the archives

Use anonymous \texttt{ftp} to any CTAN archive (see question 41) and retrieve the file README.uploads in the root directory. It contains instructions for uploading files and notifying the appropriate people for that site.

If you cannot use \texttt{ftp}, mail your contribution to ctan@dante.de and it will be passed along. You will make everyone’s life easier if you choose a descriptive and unique name for your submission, so it’s probably a good idea to check that your style file’s name is not already in use by means of the ‘site index’ command (see question 45).

44 Finding (\LaTeX)\TeX macro packages

Before you ask for a \TeX macro or \LaTeX class or package file to do something, try searching Graham Williams’ catalogue. You can also search the catalogue over the web (see question 46).
If you have learnt of a file, by some other means, that seems interesting, search a
CTAN archive for it (see question 45). For packages listed in The \LaTeX\ Companion
(see question 19) the file may be consulted as an alternative to searching the archive’s
index. It lists the current location in the archive of such files.

\textit{Graham Williams’ catalogue:} help/Catalogue/catalogue.html
\textit{companion.ctan:} info/companion.ctan

45 Finding files in the CTAN archives

To find software at a CTAN site, you can use anonymous \texttt{ftp} to the host with the command
\texttt{quote site index <term>}, or the searching script at \url{http://www.dante.de/cgi-bin/ctan-index}

To get the best use out of the \texttt{ftp} facility you should remember that \texttt{<term>} is
a Regular Expression and not a fixed string, and also that many files are distributed
in source form with an extension different to the final file. (For example \LaTeX\ packages
are often distributed sources with extension \texttt{dtx} rather than as package files with
extension \texttt{sty}.)

One should make the regular expression general enough to find the file you are
looking for, but not too general, as the \texttt{ftp} interface will only return the first 20 lines
that match your request.

The following examples illustrate these points. To search for the \LaTeX\ package
‘\texttt{caption}’, you might use the command:

\texttt{quote site index \texttt{caption.sty}}

but it will fail to find the desired package (which is distributed as \texttt{caption.dtx}) and
does return unwanted ‘hits’ (such as \texttt{hangcaption.sty}). Also, although this example
does not show it the ‘.’ in ‘\texttt{caption.sty}’ is used as the regular expression that
matches any character. So

\texttt{quote site index \texttt{doc.sty}}

matches such unwanted files as language/swedish/slatex/doc2sty/makefile

Of course if you know the package is stored as .\texttt{dtx} you can search for that name,
but in general you may not know the extension used on the archive. The solution is to
add ‘/’ to the front of the package name and ‘\texttt{\textbackslash}.’ to the end. This will then search for
a file name that consists solely of the package name between the directory separator
and the extension. The two commands:

\texttt{quote site index /caption\textbackslash.}
\texttt{quote site index /doc\textbackslash.}

do narrow the search down sufficiently. (In the case of doc, a few extra files are found,
but the list returned is sufficiently small to be easily inspected.)

If the search string is too wide and too many files would match, the list will be
truncated to the first 20 items found. Using some knowledge of the CTAN directory
tree you can usually narrow the search sufficiently. As an example suppose you wanted
to find a copy of the dvips driver for MS-DOS. You might use the command:

\texttt{quote site index dvips}

but the result would be a truncated list, not including the file you want. (If this list
were not truncated 412 items would be returned!) However we can restrict the search
to MS-DOS related drivers as follows.

\texttt{quote site index msdos.*dvips}

Which just returns relevant lines such as systems/msdos/dviware/dvips/dvips5528.zip

A basic introduction to searching with regular expressions is:

- Most characters match themselves, so "a" matches "a" etc.;
- "." matches any character;
- "[abcD-F]" matches any single character from the set \{"a","b","c","D","E","F"\};
- "*" placed after an expression matches zero or more occurrences so "a*"
 matches "a" and "aaaaa", and " [a-zA-Z]*" matches a ‘word’;
- "\" ‘quotes’ a special character such as "." so ".\" just matches ".";
- "^" matches the beginning of a line;
- "$" matches the end of a line.
For technical reasons in the quote site index command, you need to 'double' any \ hence the string /caption\ in the above example. The quote site command ignores the case of letters. Searching for caption or CAPTION would produce the same result.

46 Finding files by Web search

Two of the CTAN web servers offer a search facility: http://www.tex.ac.uk/search and http://www.ctan.org/search; you can look for a file whose name you already know (in pretty much the same way as the ftp-based quote site index command — see question 45), or you can do a keyword-based search of the catalogue.

The search script produces URLs for files that match your search criteria. The URLs point to the CTAN site or mirror of your choice; when you first use the script, it asks you to choose a site, and stores its details in a cookie on your machine. Choose a site that is close to you, to reduce network load.

47 Finding new fonts

A comprehensive list of METAFONT fonts used to be posted to comp.fonts and to comp.text.tex, roughly every six weeks, by Lee Quin.

Nowadays, authors of new material in METAFONT are few and far between (and mostly designing highly specialised things with limited appeal to ordinary users). Most new fonts that appear are prepared in some scalable outline form or other (see question 80), and they are almost all distributed under commercial terms.

METAFONT font list: info/metafont-list

48 \LaTeX{} CD-ROMs

If you don’t have access to the Internet, there are obvious attractions to \LaTeX{} collections on a CD-ROM. Even those with net access will find large quantities of \LaTeX{}-related files to hand a great convenience.

Ready-to-run \LaTeX{} systems on CD-ROM are available:

- A consortium of User Groups (notably TUG, UK TUG and GUTenberg) distribute the \LaTeX{} Live CD-ROM, now in its third edition. All members of several User Groups receive copies free of charge. Some user groups will also sell additional copies: contact your local user group or TUG (see question 18). Details of \LaTeX{} Live are available from its own web page on the TUG site.
- The Dutch \LaTeX{} Users Group (NTG) publish the whole 4All\LaTeX{} workbench on a 2-CD-ROM set packed with all the Windows \LaTeX{} software, macros and fonts you can want. It is available from NTG direct, from TUG for $40 and from UK TUG for £30 (a manual is included). It is a useful resource for anyone to browse, not just for Windows users.

An alternative to the ready-to-run system is the CTAN archive snapshot; in general one would expect that such systems would be harder to use, but that the volume of resources offered would balance this extra inconvenience. There were once commercial offerings in this field, but nowadays the snapshot supplied to user group members annually is about the only source of such things.

F \LaTeX{} Systems

49 (\LaTeX{}) for different machines

We list here the free or shareware packages; see see question 51 for details of commercial packages.

Unix Instructions for retrieving the web2c Unix \LaTeX{} distribution via anonymous ftp are to be found in unix\tex.ftp, though nowadays the sensible installer will take (and possibly customise) one of the packaged distributions such as te\LaTeX{} (which often has a more recent version of web2c embedded than has been released “in the wild”), or the \LaTeX{} Live CD-ROM (see question 48).
For teTeX, you need at most one each of the .tar.gz files for teTeX-src, teTeX-texmf and teTeX-texmfsrc.

Sets of binaries for many common Unix systems are to be found as part of the teTeX distribution, or on the TeX Live CD-ROM. There are rather more to be found on CTAN; you'll find compressed .tar archive for each supported architecture in the directory. In default of a precompiled version, teTeX will compile on most Unix systems, though it was originally developed for use under Linux (see below).

tetex: Browse systems/unix/teTeX/1.0/distrib/sources
tetex binaries: Browse systems/unix/teTeX/1.0/distrib/binaries
unixtex.ftp: systems/unix/unixtex.ftp
web2c: systems/web2c

Linux

There are at least two respectable implementations of TeX to run on Linux, NTeX and teTeX.

Beware the Slackware '96 CD-ROM distribution of NTeX: it includes a version of the CM fonts that has deeply offended Don Knuth (since it contravenes his distribution conditions). The Slackware updates now offer teTeX, as do most Linux distributions. The most recent offering is a free version of the commercial VTeX (see question 51), which specialises in direct production of PDF from (La)TeX input.

ntex: systems/unix/ntex
tetex: Browse systems/unix/teTeX/1.0/distrib/sources
tetex binaries: Browse systems/unix/teTeX/1.0/distrib/binaries
vtex: systems/vtex/linux (needs systems/vtex/common)

PC; MS-DOS or OS/2

EmTeX, by Eberhard Matte, includes EATEX, BABATEX, previewers, and drivers, and is available as a series of zip archives. Documentation is available in both German and English. Appropriate memory managers for using emTeX with 386 (and better) processors and under Windows, are included in the distribution. EmTeX will operate under Windows, but Windows users are better advised to use a distribution tailored for the Windows environment.

A version of emTeX, packaged to use a TDS directory structure (see question 39), is separately available as an emTeX ‘contribution’.

emtex: systems/msdos/emtex
extemTDS: systems/os2/emtex-contrib/emtexTDS

PC; MS-DOS

The most recent offering is an MS-DOS port of the Web2C 7.0 implementation, using the GNU djgpp compiler.

djgpp: systems/msdos/djgpp

PC; OS/2

OS/2 may also use a free version of the commercial VTeX (see question 51), which specialises in direct production of PDF from (La)TeX input.

vtex: systems/vtex/linux (needs systems/vtex/common)

PC; Win32

fpTeX, by Fabrice Popineau, is a version of teTeX for Windows systems.

As such, it is particularly attractive to those who need to switch back and forth between Windows and Unix environments, and to administrators who need to maintain both (fpTeX can use the same texmf tree as a teTeX installation). fpTeX’s previewer (Windvi) is based on xdvi, and takes advantage of extra facilities in the Win32 environment. Windvi is capable of printing directly, and a version of dvips is also available.

MikTeX, by Christian Schenk, is also a comprehensive distribution, developed separately from the teTeX work. It has its own previewer, YAP, which is itself capable of printing, though the distribution also includes a port of dvips. The current version is available for file-by-file download (the HTML files in the directory offer hints on what you need to get going). A prepackaged version of the whole directory is also available.

BaKoMa TeX, by Basil Malyshew, is a comprehensive (shareware) distribution, which focuses on support of Acrobat. The distribution comes with a bunch of Type 1 fonts packaged to work with BaKoMa TeX, which further the focus.

bakoma: nonfree/systems/win32/bakoma
\texttt{fptex: systems/win32/fptex}

\texttt{miktex: (Prepackaged) systems/win32/miktex/2.0.zip, or browse systems/win32/miktex/2.0}

Windows NT, other platforms Ports of Mik\TeX\ for NT on Power PC and AXP are available. Neither version has been updated for version 1.2 (or later) of Mik\TeX\ — they may not be satisfactory.

\texttt{miktex for AXP: systems/win32/miktex-AXP}

\texttt{miktex for Power PC: systems/win32/miktexppc}

Mac Oz\TeX, by Andrew Trevorrow, is a shareware version of \TeX\ for the Macintosh. A DVI previewer and PostScript driver are also included. UK TUG pre pays the shareware fee, so that its members may acquire the software without further payment. Questions about Oz\TeX\ may be directed to oztex@midway.uchicago.edu

Another partly shareware program is CM\TeX, put together by Tom Kiffe. This is much closer to the Unix \TeX\ setup (it uses dvips, for instance). CM\TeX\ includes a port of the latest version of Omega (see question 206).

A useful resource for Mac users has a news and ‘help’ section, as well as details of systems and tools. A useful resource for Mac users has a news and ‘help’ section, as well as details of systems and tools.

\texttt{cmactex: systems/mac/cmactex}

\texttt{oztex: nonfree/systems/mac/oztex}

OpenVMS \TeX\ for OpenVMS is available.

Standard tape distribution is through DECUS (see question 41).

\texttt{OpenVMS: systems/OpenVMS/TEX97_CTAN.ZIP}

Atari \TeX\ is available for the Atari ST.

If anonymous \texttt{ftp} is not available to you, send a message containing the line ‘\texttt{help}’ to atari@atari.archive.umich.edu

\texttt{Atari TeX: systems/atari}

Amiga Full implementations of \TeX\ 3.1 (Pas\TeX) and METAFONT 2.7 are available. You can also order a CD-ROM containing this and other Amiga software from Walnut Creek CDROM, telephone +1 510-947-5997.

\texttt{PasTeX: systems/amiga}

TOPS-20 \TeX\ was originally written on a DEC-10 under WAITS, and so was easily ported to TOPS-20. A distribution that runs on TOPS-20 is available via anonymous \texttt{ftp} from ftp.math.utah.edu in pub/tex/pub/web

50 \TeX\-friendly editors and shells

There are good \TeX-writing environments and editors for most operating systems; some are described below, but this is only a personal selection:

Unix Try GNU \texttt{emacs} or \texttt{xemacs}, and the AUCTeX mode (AUCTeX is available from CTAN, but \texttt{emacs} itself isn’t). AUCTeX provides menu items and control sequences for common constructs, checks syntax, lays out markup nicely, lets you call \TeX\ and drivers from within the editor, and everything else like this that you can think of. Complex, but very powerful.

MS-DOS There are several choices:

- \texttt{\TeX}shell is a simple, easily-customisable environment, which can be used with the editor of your choice.

- Eddi\TeX\ (also shareware) is a specially-written \TeX\ editor which features intelligent colouring, bracket matching, syntax checking, online help and the ability to call \TeX\ programs from within the editor. It is highly customisable, and features a powerful macro language.

You can also use GNU \texttt{emacs} and AUCTeX under MS-DOS.

Windows \texttt{9x, NT, etc.} \texttt{Winedit}, a shareware package, is highly spoken of. It provides a shell for the use of \TeX\ and related programs, as well as a powerful and well-configured editor.
The 4AllT\TeX\ CD-ROM (see question 48) contains another powerful Windows-based shell.

OS/2 Eddi4T\TeX\ works under OS/2; an alternative is \texttt{epmteX}, which offers an OS/2-specific shell.

Macintosh The commercial Textures provides an excellent integrated Macintosh environment with its own editor. More powerful still (as an editor) is the shareware \texttt{Alpha} which is extensible enough to let you perform almost any \TeX-related job. It works well with \TeXX.

Atari, Amiga and NeXT users also have nice environments. \texttt{I\TeX}X\ users who like \texttt{make} should try \texttt{support/latexmk}

There is another set of shell programs to help you manipulate \texttt{BIBT\TeX} databases.

\begin{itemize}
 \item \texttt{alpha: systems/mac/support/alpha}
 \item \texttt{auctex: support/auctex}
 \item \texttt{epmteX: systems/os2/epmteX}
 \item \texttt{TeXshell: systems/msdos/texshell}
 \item \texttt{TeXtelmExtel: systems/msdos/emtex-contrib/TExtelmExtel}
 \item \texttt{winedt: systems/win32/winedt/winedt32.exe}
\end{itemize}

51 Commercial \TeX implementations

There are many commercial implementations of \TeX. The first appeared not long after \TeX itself appeared.

What follows is probably an incomplete list. Naturally, no warranty or fitness for purpose is implied by the inclusion of any vendor in this list. The source of the information is given to provide some clues to its currency.

In general, a commercial implementation will come ‘complete’, that is, with suitable previewers and printer drivers. They normally also have extensive documentation (\textit{i.e.}, not just the \TeXbook!) and some sort of support service. In some cases this is a toll free number (probably applicable only within the USA and or Canada), but others also have email, and normal telephone and fax support.

PC; True\TeX Runs on Windows 3.1, Window NT and Windows 95.

Richard J. Kinch
TrueTeX Software
6994 Pebble Beach Court
Lake Worth FL 33467
USA
Tel: +1 561-966-8400
Fax: +1 305-644-6978
Email: kinch@truetex.com
Web: \url{http://truetex.com/}

Source: News posting from Richard Kinch, October 1997, updated from new web page.

PC; Y\&Y \TeX “Bitmap free \TeX for Windows.”

Y\&Y, Inc.
45 Walden Street
Concord MA 01742
USA
Tel: 800-742-4059 (within the USA)
Tel: +1 508-371-3286
Fax: +1 508-371-2004
Email: sales-help@YandY.com and tech-help@YandY.com
Web: \url{http://www.YandY.com/}

Source: Y\&Y announcement, February 1995

pc\TeX Long-established: pc\TeX32 is a Windows implementation.

26
PC; \TeX \ DVI, PDF and HTML backends, Visual Tools and Type 1 fonts

MicroPress Inc
68-30 Harrow Street
Forest Hills, NY 11375
USA
Tel: +1 718-575-1816
Fax: +1 718-575-8038
Email: support@micropress-inc.com
Web: http://www.micropress-inc.com/

Source: Mail from MicroPress, Inc., July 1999

PC; Scientific Word Scientific Word and Scientific Workplace offer a mechanism for near-WYSIWYG input of \TeX documents; they ship with True\TeX from Kinch (see above). Queries within the UK and Ireland should be addressed to Scientific Word Ltd., others should be addressed directly to the publisher, MacKichan Software Inc.

Dr Christopher Mabb
Scientific Word Ltd.
49 Queen Street
Peterhead
Aberdeenshire, AB42 1TU
UK
Tel: 0845 766 0340 (within the UK)
Tel: +44 1779 490500
Fax: 01779 490600 (within the UK)
Email: christopher@sciword.demon.co.uk
Web: http://www.sciword.demon.co.uk

MacKichan Software Inc.
600 Ericksen Ave. NE, Suite 300
Bainbridge Island WA 98110
USA
Tel: +1 206 780 2799
Fax: +1 206 780 2857
Email: info@mackichan.com
Web: http://www.mackichan.com

Source: Mail from Christopher Mabb, May 1999

Macintosh; Textures “A \TeX system ‘for the rest of us’”; also gives away a META-FONT implementation and some font manipulation tools.

Blue Sky Research
534 SW Third Avenue
Portland, OR 97204
USA
Tel: 800-622-8398 (within the USA)
Tel: +1 503-222-9571
Fax: +1 503-222-1643
Email: sales@bluesky.com
Web: http://www.bluesky.com/

Source: \textit{TUG}boat \textbf{15}(1) (1994)
AmigaT\TeX \ A full implementation for the Commodore Amiga, including full, on-
screen and printing support for all PostScript graphics and fonts, IFF raster
graphics, automatic font generation, and all of the standard macros and utilities.

Radical Eye Software
PO Box 2081
Stanford, CA 94309
USA

Source: Mail from Tom Rokicki, November 1994

G \ DVI Drivers and Previewers

52 \ DVI to PostScript conversion programs

The best public domain DVI to PostScript conversion program which runs under many
operating systems is Tom Rokicki’s \texttt{dvips}. \texttt{dvips} is written in C and ports easily to other
operating systems.

VMS versions are available through the DECUS library (see question 41), and also
as part of the distribution of \TeX \ for VMS.

A precompiled version to work with em\TeX \ is available on CTAN.

Karl Berry’s version of \texttt{dvips} (called \texttt{dvipsk}) has a configure script and path searching
code similar to that in his other programs (e.g., \texttt{web2c}).

Macintosh users can use either the excellent drivers built into OZ\TeX \ or Textures,
or a port of \texttt{dvips} in the CM\TeX \ package.

\texttt{dvips}: dviware/dvips
\texttt{dvipsk}: dviware/dvipsk
\texttt{MS-DOS and OS/2}: systems/mdos/dviware/dvips
\texttt{VMS distribution}: systems/OpenVMS/TEX97_CTAN.ZIP

53 \ DVI drivers for HP LaserJet

The em\TeX \ distribution (see question 49) contains a driver for the LaserJet, \texttt{dvihplj}.

Version 2.10 of the Beebe drivers supports the LaserJet. These drivers will compile
under Unix, VMS, and on the Atari ST and DEC-20s.

For Unix systems, Karl Berry’s \texttt{dviljk} uses the same path-searching library as
\texttt{web2c}.

\texttt{Beebe drivers}: dviware/beebex
\texttt{dviljk}: dviware/dviljk

54 \ Output to “other” printers

In the early years of \TeX, there were masses of DVI drivers for any (then)
imaginable kind of printer, but the steam seems rather to have gone out of the market for production
of such drivers for printer-specific formats. There are several reasons for this, but the
primary one is that few formats offer the flexibility available through PostScript, and
\texttt{ghostscript} is so good, and has such a wide range of printer drivers (perhaps this is
where the DVI output driver writers have all gone?).

The general advice, then, is to generate PostScript (see question 52), and to process
that with \texttt{ghostscript} set to generate the format for the printer you actually have. If you
are using a Unix system of some sort, it’s generally quite easy to insert \texttt{ghostscript} into
the print spooling process.

\texttt{ghostscript}: Browse nonfree/support/ghostscript

55 \ DVI previewers

Em\TeX \ for PCs running MS-DOS or OS/2, Mik\TeX \ and fp\TeX \ for PCs running Windows
and Oz\TeX \ for the Macintosh, all come with previewers that can be used on those
platforms. Em\TeX \’s previewer can also be run under Windows 3.1.
Commercial PC Te\TeX\ packages (see question \ref{q51}) have good previewers for PCs running Windows, or for Macintoshes.

For Unix systems, there is one ‘canonical’ viewer, \textit{xdvi}. \textit{Xdvik} is a version of \textit{xdvi} using the \textit{web2c} libraries. Unix Te\TeX\ distributions (such as te\TeX\ or N\TeX) include a version of \textit{xdvik} using the same version of \textit{web2c} as the rest of the distribution.

Alternatives to previewing include

\begin{itemize}
\item conversion to ‘similar’ ASCII text (see question \ref{q63}) and using a conventional text viewer to look at that,
\item generating a PostScript version of your document and viewing it with a \textit{Ghostscript}-based previewer (see question \ref{q77}), and
\item generating PDF output, and viewing that with \textit{Acrobat Reader} or one of the substitutes for that.
\end{itemize}

\textit{xdvi}: dviware/xdvi
\textit{xdvik}: dviware/xdvik

\section{Support Packages for Te\TeX\}

\subsection{Fig, a Te\TeX\-friendly drawing package}

\textit{(X)Fig} is a menu driven tool that allows you to draw objects on the screen of an X workstation; \textit{transfig} is a set of tools which translate the code \textit{fig} produces to other graphics languages including PostScript and the \textit{\LaTeX} picture environment.

\textit{Fig} is supported by Micah Beck and \textit{transfig} is maintained by Brian Smith. Another tool for \textit{fig} conversion is \textit{fig2mf} which generates METAFONT code from \textit{fig} input.

\begin{verbatim}
fig2mf: graphics/fig2mf
xfig: graphics/xfig
transfig: graphics/transfig
\end{verbatim}

\subsection{T\TeX\\textsc{cad}, a drawing package for \LaTeX\}

T\TeX\\textsc{cad} is a program for the PC which enables the user to draw diagrams on screen using a mouse or arrow keys, with an on-screen menu of available picture-elements. Its output is code for the \textit{\LaTeX} picture environment. Optionally, it can be set to include lines at all angles using the em\TeX\ driver-family \texttt{\special}s (see question \ref{q34}). T\TeX\\textsc{cad} is part of the em\TeX\ distribution.

A Unix port of the program (\textit{xtexcad}) has been made.

\begin{verbatim}
emtex: systems/msdos/emtex
xtexcad: nonfree/graphics/xtexcad/xtexcad-2.4.1.tar.gz
\end{verbatim}

\subsection{Spelling checkers for work with Te\TeX\}

For Unix, \textit{ispell} is probably the program of choice; it is well integrated with the \textit{emacs}, and deals with some \TeX\ syntax.

For MS-DOS, there are several programs. \textit{Amspell} can be called from within an editor, and \textit{jspell} is an extended version of \textit{ispell}.

For the Macintosh, \textit{Excalibur} is the program of choice. It will run in native mode on both sorts of Macintosh. The distribution comes with dictionaries for several languages.

The VMS Pascal program \textit{spell} makes special cases of some important features of \LaTeX\ syntax.

\begin{verbatim}
amspell: support/amspell
excalibur: systems/mac/support/excalibur/Excalibur-3.0.2.hqx
ispell: Browse support/ispell, but beware of any version with a number 4.x —
such versions represent a divergent version of the source which lacks many
useful facilities of the 3.x series.
jspell: support/jspell
VMS spell: support/vmspell
\end{verbatim}
59 How many words have you written?

One often has to submit a document (e.g., a paper or a dissertation) under some sort of constraint about its size. Sensible people set a constraint in terms of numbers of pages, but there are some that persist in limiting the numbers of words you type.

A simple solution to the requirement can be achieved following a simple observation: the powers that be are unlikely to count all the words of a document submitted to them. Therefore, a statistical method can be employed: find how many words there are on a full page; find how many full pages there are in the document (allowing for displays of various sorts, this number will probably not be an integer); multiply the two. However, if the document to be submitted is to determine the success of the rest of one’s life, it takes a brave person to thumb their nose at authority quite so comprehensively...

The simplest method is to strip out the (L)ATEX markup, and to count what’s left. On a Unix-like system, this may be done using detex and the built-in wc:

```
detex <filename> | wc -w
```

Winedt (see question 50) in the Windows environment provides this functionality direct.

Simply stripping (L)ATEX markup isn’t entirely reliable, however: that markup itself may contribute typeset words, and this could be a problem. The wordcount package contains a Bourne shell (i.e., typically Unix) script for running a (L)ATEX file with a special piece of supporting TeX code, and then counting word indications in the log file. This is probably as accurate automatic counting as you can get.

```
detex: support/detex
wordcount: macros/latex/contrib/supported/wordcount
```

I Literate programming

60 What is Literate Programming?

Literate programming is the combination of documentation and source together in a fashion suited for reading by human beings. In general, literate programs combine source and documentation in a single file. Literate programming tools then parse the file to produce either readable documentation or compilable source. The WEB style of literate programming was created by D. E. Knuth during the development of TeX.

The “documented LATEX” style of programming (see question 35) is regarded by some as a form of literate programming, though it only contains a subset of the constructs Knuth used.

Discussion of literate programming is conducted in the newsgroup comp.programming.literate, whose FAQ is stored on CTAN.

Literate Programming FAQ: help/LitProg-FAQ

61 WEB systems for various languages

\TeX{} is written in the programming language WEB; WEB is a tool to implement the concept of “literate programming”. Knuth’s original implementation will be in any respectable distribution of \TeX{}, but the sources of the two tools (tangle and weave), together with a manual outlining the programming techniques, may be had from CTAN.

\texttt{CWEB}, by Silvio Levy, is a WEB for C programs.

Spidery WEB, by Norman Ramsey, supports many languages including Ada, awk, and C and, while not in the public domain, is usable without charge.

\texttt{FWEB}, by John Krommes, is a version for Fortran, Ratfor, and C.

\texttt{SchemeWEB}, by John Ramsdell, is a Unix filter that translates SchemeWEB into \TeX{} source or Scheme source.

\texttt{APLWEB} is a version of WEB for APL.

\texttt{FunnelWeb} is a version of WEB that is language independent.

Other language independent versions of WEB are \texttt{nuweb} (which is written in ANSI C) and \texttt{noweb}.

\texttt{Tweb} is a WEB for Plain \TeX{} macro files, using \texttt{noweb}.

\texttt{aplweb}: web/apl/aplweb
Conversion between (La)TeX and others

\textbf{troff} \textit{troff-to-latex}, written by Kamal Al-Yahya at Stanford University (California, USA), assists in the translation of a \textit{troff} document into \LaTeX\ format. It recognises most \texttt{-m} and \texttt{-man} macros, plus most \texttt{eqn} and some \texttt{tbl} preprocessor commands. Anything fancier needs to be done by hand. Two style files are provided. There is also a man page (which converts very well to \LaTeX\...). The program is copyrighted but free. \textit{tr2latex} is an enhanced version of this \textit{troff-to-latex}.

The DECUS \LaTeX\ distribution (see question 41) also contains a program which converts \textit{troff} to \LaTeX. \textit{WordPerfect wp2latex} has recently been much improved, and is now available either for MS-DOS or for Unix systems, thanks to its current maintainer Jaroslav Fojtik.

\textbf{PC-Write} \textit{pcwrite.arc} is a print driver for PC-Write that “prints” a PC-Write V2.71 document to a \LaTeX\-compatible disk file. It was written by Peter Flynn at University College, Cork, Republic of Ireland.

\textbf{runoff} Peter Vanroose’s \textit{rnototex} conversion program is written in VMS Pascal. The sources are distributed with a VAX executable.

\textbf{refer/tib} There are a few programs for converting bibliographic data between BIB\LaTeX\ and \textit{refer/tib} formats. The collection includes a shell script converter from BIB\LaTeX\ to \textit{refer} format as well. The collection is not maintained.

\textbf{RTF} \textit{Rtf2tex}, by Robert Lupton, is for converting Microsoft’s Rich Text Format to \LaTeX. There is also a convertor to \LaTeX\ by Erwin Wechtl, called \textit{rft2latex}. The latest convertor, by Ujwal Sathyam and Scott Prahl, is \textit{rft2latex2e}; this system seems rather good already, and is still being improved.

Translation to RTF may be done (for a somewhat constrained set of \LaTeX\ documents) by \textit{T\!EX2RTF}, which can produce ordinary RTF, Windows Help RTF (as well as HTML, see question 65). \textit{T\!EX2RTF} is supported on various Unix platforms and under Windows 3.1

\textbf{Microsoft Word} A rudimentary program for converting MS-Word to \LaTeX\ is \textit{wd2latex}, for MS-DOS; a better idea, however, is to convert the document to RTF format and use one of the RTF converters mentioned above.

\textbf{Excel} \textit{Excel2Latex} converts an Excel file into a \LaTeX\ \texttt{tabular} environment; it comes as a \texttt{xls} file which defines some \textit{Excel} macros to produce output in a new format.

A separate FAQ by Wilfried Hennings deals specifically with conversions between \LaTeX\-based formats and word processor formats may be referred to for more detailed information.

A group at Ohio State University (USA) is working on a common document format based on SGML, with the ambition that any format could be translated to or from this one. \textit{FrameMaker} provides “import filters” to aid translation from alien formats (presumably including \LaTeX) to \textit{FrameMaker}’s own.
63 Conversion from (\LaTeX) to plain ASCII

The aim here is to emulate the Unix `nroff`, which formats text as best it can for the
screen, from the same input as the Unix typesetting program `troff`.

Converting DVI to plain text is the basis of many of these techniques; sometimes
the simple conversion provides a good enough response. Options are:

- `dvi2tty` (one of the earliest)
- `crudetype`
- `catdvi`, which is also capable of generating Latin-1 or UTF-8 encoded output.
 Catdvi was conceived as a replacement for `dvi2tty`, but can’t (quite) be recommended as a complete replacement yet.

Ralph Droms provides a `txt` bundle of things in support of ASCII generation, but
it doesn’t do a good job with tables and mathematics. An alternative is the `screen`
package.

Another possibility is to use the `\LaTeX`-to-ASCII conversion program, `l2a`, although
this is really more of a de-\TeX{}ing program.

The canonical de-\TeX{}ing program is *detex*, which removes all comments and
control sequences from its input before writing it to its output. Its original purpose was
to prepare input for a dumb spelling checker, and it’s only usable for preparing useful
ASCII versions of a document in highly restricted circumstances.

Tex2mail is slightly more than a de-\TeX{}er — it’s a Perl script that converts \TeX{} files into plain text files, expanding various mathematical symbols (sums, products, integrals, sub/superscripts, fractions, square roots, …) into “ASCII art” that spreads over multiple lines if necessary. The result is more readable to human beings than the flat-style \TeX{} code.

Another significant possibility is to use one of the HTML-generation solutions (see question 65), and then to use a browser such as `lynx` to dump the resulting HTML as
plain text.

- `catdvi`: `dviware/catdvi`
- `crudetype`: `dviware/crudetype`
- `detex`: `support/detex`
- `dvi2tty`: `nonfree/dviware/dvi2tty`
- `l2a`: `support/l2a`
- `screen.sty`: `macros/latex209/contrib/misc/screen.sty`
- `tex2mail`: `support/tex2mail`
- `txt`: `support/txt`
64 Conversion from SGML or HTML to \TeX

SGML is a very important system for document storage and interchange, but it has no formatting features; its companion ISO standard DSSSL (see \url{http://www.jclark.com/dsssl/}) is designed for writing transformations and formatting, but this has not yet been widely implemented. Some SGML authoring systems (e.g., SoftQuad Author/Editor) have formatting abilities, and there are high-end specialist SGML typesetting systems (e.g., Miles33's Genera). However, the majority of SGML users probably transform the source to an existing typesetting system when they want to print. \TeX{} is a good candidate for this. There are three approaches to writing a translator:

1. Write a free-standing translator in the traditional way, with tools like yacc and lex; this is hard, in practice, because of the complexity of SGML.
2. Use a specialist language designed for SGML transformations; the best known are probably Omnimark and Balise. They are expensive, but powerful, incorporating SGML query and transformation abilities as well as simple translation.
3. Build a translator on top of an existing SGML parser. By far the best-known (and free!) parser is James Clark’s nsgmls, and this produces a much simpler output format, called ESIS, which can be parsed quite straightforwardly (one also has the benefit of an SGML parse against the DTD). Two good public domain packages use this method:
 - David Megginson’s sgmlspm, written in Perl 5.
 - Joachim Schrod and Christine Detig’s stil, written in Common Lisp.

Both of these allow the user to write 'handlers' for every SGML element, with plenty of access to attributes, entities, and information about the context within the document tree.

If these packages don’t meet your needs for an average SGML typesetting job, you need the big commercial stuff.

Since HTML is simply an example of SGML, we do not need a specific system for HTML. However, Nathan Torkington developed html2latex from the HTML parser in NCSA’s Xmosaic package. The program takes an HTML file and generates a \TeX{} file from it. The conversion code is subject to NCSA restrictions, but the whole source is available as \url{support/html2latex}.

Michel Goossens and Janne Saarela published a very useful summary of SGML, and of public domain tools for writing and manipulating it, in TUGboat 16(2).

65 (\(\text{\LaTeX}\) conversion to HTML)

\LaTeX{} and \(\text{\LaTeX}\) are well suited to producing electronically publishable documents. However, it is important to realize the difference between page layout and functional mark-up. \LaTeX{} is capable of extremely detailed page layout; HTML is not, because HTML is a functional mark-up language not a page layout language. HTML’s exact rendering is not specified by the document that is published but is, to some degree, left to the discretion of the browser. If you require your readers to see an exact replication of what your document looks like to you, then you cannot use HTML and you must use some other publishing format such as PDF. That is true for any HTML authoring tool.

\LaTeX{}’s excellent mathematical capabilities remain a challenge in the business of conversion to HTML. There are only two generally reliable techniques for generating mathematics on the web: creating bitmaps of bits of typesetting that can’t be translated, and using symbols and table constructs. Neither technique is entirely satisfactory. Bitmaps lead to a profusion of tiny files, are slow to load, and are inaccessible to those with visual disabilities. The symbol fonts offer poor coverage of mathematics, and their use requires configuration of the browser. The future of mathematical browsing may be brighter — see question 209.

For today, possible packages are:

\LaTeX{}2HTML a perl script package that supports \(\text{\LaTeX}\) only, and generates mathematics (and other “difficult” things) using bitmaps. The original version was written by Nikos Drakos for Unix systems, but the package is now also available for Windows systems. Michel Goossens and Janne Saarela published a detailed discussion of \LaTeX{}2HTML, and how to tailor it, in TUGboat 16(2).
TtH a compiled program that supports either LATEX or plain \TeX, and uses the font/table technique for representing mathematics. It is written by Ian Hutchinson, using *flex*. The distribution consists of a single C source (or a compiled executable), which is easy to install and very fast-running.

Tex4ht a compiled program that supports either LATEX or plain \TeX, by processing a DVI file; it uses bitmaps for mathematics, but can also use other technologies where appropriate. Written by Eitan by Gurari, it parses the DVI file generated when you run (\LaTeX\over your file with tex4ht’s macros included. As a result, it’s pretty robust against the macros you include in your document, and it’s also pretty fast.

TeXpider a commercial program from MicroPress (see question 51), which is described on http://www.micropress-inc.com/webb/wbstart.htm; it uses bitmaps for equations.

Hevea a compiled program that supports LATEX only, and uses the font/table technique for equations (indeed its entire approach is very similar to TtH). It is written in Objective CAML by Luc Maranget. Hevea isn’t archived on CTAN; details (including download points) are available via http://pauillac.inria.fr/~maranget/hevea/

The World Wide Web Consortium maintains a list of “filters” to HTML, with sections on (\LaTeX\ and BibTEX — see http://www.w3.org/Tools/Word_proc_filters.html

- *latex2html*: Browse support/latex2html
- *tex4ht*: support/Tex4ht/tex4ht.zip
- *tth*: nonfree/support/tth/dist/tth_C.tgz

66 Using \TeX\ to read SGML or XML directly

This can nowadays be done, with a certain amount of clever macro programming. David Carlisle’s *xmltex* is the prime example; it offers a practical solution to typesetting XML files.

One use of a \TeX\ that can typeset XML files is as a backend processor for XSL formatting objects, serialized as XML. Sebastian Rahtz’s Passive\TeX\ uses *xmltex* to achieve this end.

- *xmltex*: macros/xmltex/base
- *passivetex*: macros/xmltex/contrib/passivetex

67 Retrieving (\LaTeX\ or DVI from DVI, etc.

The job just can’t be done automatically: DVI, PostScript and PDF are “final” formats, deliberately not susceptible to further conversion; so if you’ve lost your (\LaTeX\ source (or never had the source of a document you need to work on) you’ve a serious job on your hands. In many circumstances, the best strategy is to retype the whole document, but this strategy is to be tempered by consideration of the size of the document and the potential typists’ skills.

If automatic assistance is necessary, it’s unlikely that any more than text retrieval is going to be possible; the (\LaTeX\ markup that creates the typographic effects of the document needs to be recreated by editing.

If the file you have is in DVI format, many of the techniques for converting (\LaTeX\ to ASCII (see question 63) are applicable. Consider dvi2tty, crudetype and catdvi. Remember that there are likely to be problems finding included material (such as included PostScript figures, that don’t appear in the DVI file itself), and mathematics is unlikely to convert easily.

To retrieve text from PostScript files, the ps2ascii tool (part of the ghostscript distribution) is available. One could try applying this tool to PostScript derived from an PDF file using pdf2ps (also from the ghostscript distribution), or Acrobat Reader itself; an alternative is pdftotext, which is distributed with xpdf.

- *catdvi*: dviware/catdvi
- *crudetype*: dviware/crudetype
K Hypertext and PDF

68 Making hypertext documents from \TeX

If you want on-line hypertext with a (\LaTeX) source, probably on the World Wide Web, consider four technologies (which overlap):

1. Try direct \LaTeX conversion to HTML (see question 65);
2. Rewrite your document using Texinfo (see question 15), and convert that to HTML;
3. Look at Adobe Acrobat, an electronic delivery system guaranteed to preserve your typesetting perfectly (see question 69);
4. Invest in the hyper\TeX conventions (standardised \special commands); there are supporting macro packages for Plain \TeX and \LaTeX).

The Hyper\TeX project extended the functionality of all the \LaTeX cross-referencing commands (including the table of contents) to produce \special commands which are parsed by DVI processors conforming to the Hyper\TeX guidelines; it provides general hypertext links, including those to external documents.

The Hyper\TeX specification says that conformant viewers/translator must recognize the following set of \special commands:

\begin{verbatim}
href: html:
name: html:
end: html:
image: html:
base_name: html:<base href = "href_string">
\end{verbatim}

The \texttt{href}, \texttt{name} and \texttt{end} commands are used to do the basic hypertext operations of establishing links between sections of documents.

Further details are available on \url{http://xxx.lanl.gov/hypertex/}; there are two commonly-used implementations of the specification, a modified xdvi and (recent releases of) dvips. Output from the latter may be used in recent releases of Ghostscript or Acrobat Distiller.

69 Making Acrobat documents from \LaTeX

There are three general routes to Acrobat output: Adobe’s original ‘distillation’ route (via PostScript output), conversion of a DVI file, and the use of a direct PDF generator such PDF\TeX (see question 208) or MicroPress’s VT\TeX (see question 51).

For simple documents (with no hyper-references), you can either

\begin{itemize}
\item process the document in the normal way, produce PostScript output and distill it,
\item (on a Windows or Macintosh machine with Acrobat Exchange installed) pass the output through the PDFwriter in place of a printer driver. This route is a dead end: the PDFwriter cannot create hyperlinks.
\item process the document in the normal way and generate PDF direct from the DVI with \texttt{dvipdfm}, or
\item process the document direct to PDF with PDF\TeX or VT\TeX. PDF\TeX has the advantage of availability for a wide range of platforms, VT\TeX (available commercially for Windows, or free of charge for Linux or OS/2) has wider graphics capability, dealing with encapsulated PostScript and some in-line PostScript.
\end{itemize}

To translate all the \LaTeX cross-referencing into Acrobat links, you need a \LaTeX package to suitably redefine the internal commands. There are two of these for \LaTeX, both capable of conforming to the Hyper\TeX specification (see question 68): Sebastian Rahtz’s \texttt{hyperref}, and Michael Mehlich’s \texttt{hyper}. \texttt{Hyperref} uses a configuration file to determine how it will generate hypertext; it can operate using PDF\TeX primitives, the
hyperTeX \specials, or DVI driver-specific \special commands. Both dvips and Y\&Y's DVIPSONE translate the DVI with these \special commands into PostScript acceptable to Distiller.

There is no free implementation of all of Adobe Distiller's functionality, but recent versions of ghostscript provide pretty reliable distillation (but beware of the problems discussed in question 70). Also, Distiller itself is now remarkably cheap (for academics at least).

For viewing (and printing) the resulting files, Adobe's Acrobat Reader is available for a fair range of platforms; for those for which Adobe's reader is unavailable, remotely current versions of ghostscript can display and print PDF files.

dvipdfm: dviware/dvipdfm
ghostscript: Browse nonfree/support/ghostscript
hyper.sty: macros/latex/contrib/supported/hyper
hyperref.sty: macros/latex/contrib/supported/hyperref
vtex: systems/vtex/linux (for Linux) or systems/vtex/os2 (for OS/2), together with systems/vtex/common

70 Quality of PDF from PostScript

Any output of dvips may (in principle) be converted to PDF, using either a sufficiently recent version of ghostscript or Adobe's (commercial) Distiller, but the results can be pretty poor if certain simple precautions are omitted.

First, it's important to use type 1 fonts in preparing the output; METAFONT bitmap fonts get converted to type 3 fonts when converting to PDF, and Adobe's Acrobat Reader (which most of the world uses to view PDF files) makes a very poor fist of displaying type 3 fonts. If you've written a document that uses nothing but fonts such as Adobe Times, which only exist in type 1 format, no further action is actually required; however, most ordinary (LATEX) documents contain at least odd characters that originate in METAFONT, and it's advisable to tell dvips to use type 1 versions regardless. One does this by using the dvips switches -Pcmz and -Pamz.

Second, if you're using ghostscript (or the ps2pdf script that's distributed with it) make sure you have an appropriate version. Again, if your document contains nothing but the "basic PostScript" set of fonts (Times, etc), the restrictions are less burdensome and you can get away with using ghostscript version 5.50; however, that version makes type 3 fonts of any type 1 fonts embedded in the PostScript, which is pretty unsatisfactory. To be safe, ensure that you're using ghostscript version 6.00 at least (at the time of writing, version 6.50 is current).

Third, some versions of Acrobat Reader are confused by characters that are in positions where Adobe fonts don't hold characters, and most METAFONT-supplied fonts have such characters (even after they've been converted to type 1). Dvips provides a means for remapping these characters to places where they'll be harmless; to invoke this facility, execute dvips with the switch -G1.

Recent distributions of dvips come with a "pdf" pseudo-printer description file; this bundles selection of the type 1 fonts and character remapping with setting a very high nominal printer resolution, thus sidestepping dvips's tendency to 'optimise' output destined for low-resolution printers. Use this by including the -Ppdf switch in your dvips command line.

71 Finding '8-bit' Type 1 fonts

Elsewhere, these FAQs recommend that you use an '8-bit' font to permit accentuation of inflected languages (see question 170), and also recommend the use of Type 1 fonts to ensure that you get good quality PDF (see question 70). Unfortunately, the combination proves not to be entirely straightforward: it's not always easy to find a satisfactory set of Type 1 fonts.

The recommendations prove to be contradictory: there are obstacles in the way of achieving both at the same time. You can use one of the myriad text fonts available in Type 1 format (with appropriate PSNFSS metrics for T1 encoding, or metrics for some
other 8-bit encoding such as LY1); you can use a commercial or shareware CM-like
Type 1 fonts; or you can use virtual font manipulations — but all these options have
their drawbacks. If you use someone else’s text font (even something as simple as Adobe’s Times
family) you have to find a matching family of mathematical fonts, which is a non-trivial
undertaking — see question 80.

Commercial CM-like fonts cost money: remarkably little money for commercial
products with such a large intellectual property input, but more than this author could
ordinarily expend... Y&Y offer their “European Modern” set: an extension of the CM
fonts that may used either with T1 or LY1 encoding; these are fonts from the same
stable that gave us the free AMS/Blue Sky Research/Y&Y fonts, sensitively extended
(though they don’t cover the more eccentric areas of the T1 encoding, and don’t come in
the same welter of design sizes that the EC fonts offer). Micropress offer the complete
EC set in Type 1 format, as part of their range of outline versions of fonts that were
originally distributed in METAFONT format. See question 51.

The shareware BaKoMa \TeX\ distribution (see question 49) offers a set of Type 1
EC fonts, as an extra shareware option. (As far as the present author can tell, these fonts
are only available to users of BaKoMa \TeX: they are stored in an archive format that
seems not to be publicly available.)

Virtual fonts (see question 33) help us deal with the problem, since they allow
us to map “bits of DVI file” to single characters in the virtual font; so we can create an “é” character by recreating the DVI commands that would result from the code
“\‘e”. However, since this involves two characters being selected from a font, the
arrangement is sufficient to fool Acrobat Reader: you can’t use the program’s facilities
for searching for text that contains inflected characters, and if you cut text from a
window that contains such a character, you’ll find something unexpected (typically the
accent and the ‘base’ characters separated by a space) when you paste the result.
However, if you can live with this difficulty, virtual fonts are a useful, straightforward,
and cheap solution to the problem.

There are two virtual-font offerings of CM-based 8-bit fonts — the ae (“almost
EC”) and zefonts sets; the zefonts set has wider coverage (though the ae set may be
extended to offer guillemets by use of the aeguill package).

\texttt{ae fonts: fonts/ae}
\texttt{aeguill.sty: macros/latex/contrib/support/aeguill}
\texttt{zefonts: fonts/zefonts}

\section{METAFONT and MetaPost}
\subsection{Getting METAFONT to do what you want}

METAFONT allows you to create your own fonts, and most \TeX\ users will never need
to use it. METAFONT, unlike \TeX, requires some customisation: each output device
for which you will be generating fonts needs a mode associated with it. Modes are
defined using the mode_def convention described on page 94 of The \texttt{METAFONT}book
(see question 19). You will need a file, which conventionally called \texttt{local.mf}, con-
taining all the \texttt{mode_defs} you will be using. If \texttt{local.mf} doesn’t already exist, Karl
Berry’s collection of modes, available as fonts/modes/modes.mf, is a good starting
point (it can be used as a ‘local.mf’ without modification in a ‘big enough’ implemen-
tation of METAFONT). Lists of settings for various output devices are also published
periodically in TUGbook (see question 18). Now create a plain base file using \texttt{inimf},
\texttt{plain.mf}, and \texttt{local.mf}:

\begin{verbatim}
% inimf
This is METAFONT...
**plain (output) you type ‘plain’
*input local (output) you type this
*dump you type this
\end{verbatim}

37
Beginning to dump on file plain...

This will create a base file named plain.base (or something similar; for example, it will be PLAIN.BAS on MS-DOS systems) which should be moved to the directory containing the base files on your system (note that some systems have two or more such directories, one for each ‘size’ of METAFONT used).

Now you need to make sure METAFONT loads this new base when it starts up. If METAFONT loads the plain base by default on your system, then you’re ready to go. Under Unix (using the default web2c distribution) this does indeed happen, but we could for instance define a command mf which executes virmf $plain loading the plain base file.

The usual way to create a font with plain METAFONT is to start it with the line

\mode=\mode; \mag=\mag; \input

in response to the ‘**’ prompt or on the METAFONT command line. (If \mode is unknown or omitted, the mode defaults to ‘proof’ and METAFONT will produce an output file called <fontfilename>.2602gf) The \mag is a floating point number or ‘magstep’ (magsteps are defined in The METAFONTbook and The \TeX book). If \mag is omitted, then the default is 1 (magstep 0). For example, to generate cmr10 at 12pt for an epson printer you would type

\mode=epson; \mag=magstep 1; \input cmr10

Note that under Unix the \ and ; characters must usually be quoted or escaped, so this would typically look something like

\mode=epson; \mag=magstep 1; \input cmr10

If you don’t have inimf or need a special mode that isn’t in the base, you can put its commands in a file (e.g., ln03.mf) and invoke it on the fly with the \mode command.

For example, to create cmr10.300gf for an LN03 printer, using the file

% This is ln03.mf as of 1990/02/27
% mode_def courtesy of John Sauter
proofing:=0;
fontmaking:=1;
tracingtitles:=0;
pixels_per_inch:=300;
blacker:=0.65;
fillin:=-0.1;
o_correction:.5;

(note the absence of the mode_def and enddef commands), you would type

\mode="ln03"; \input cmr10

This technique isn’t one you should regularly use, but it may prove useful if you acquire a new printer and want to experiment with parameters, or for some other reason are regularly editing the parameters you’re using. Once you’ve settled on an appropriate set of parameters, you should use them to rebuild the base file that you use.

A summary of the above written by Geoffrey Tobin, and tips about common pitfalls in using METAFONT, is available as info/metafont-for-beginners.tex

73 Which font files should be kept

METAFONT produces from its run three files, a metrics (TFM) file, a generic font (GF) file, and a log file; all of these files have the same base name as does the input (e.g., if the input file was cmr10.mf, the outputs will be cmr10.tfm, cmr10.nnngf and cmr10.log).

For \TeX to use the font, you need a TFM file, so you need to keep that. However, you are likely to generate the same font at more than one magnification, and each time you do so you’ll (incidentally) generate another TFM file; these files are all the same, so you only need to keep one of them.

5The command name is symbolically linked to virmf, and virmf loads command.name.base
6Note that the file name may be transmuted by such operating systems as MS-DOS, which don’t permit long file names
To preview or to produce printed output, the DVI processor will need a font raster file; this is what the GF file provides. However, while there used (once upon a time) to be DVI processors that could use GF files, modern processors use packed raster (PK) files. Therefore, you need to generate a PK file from the GF file; the program \texttt{gftopk} does this for you, and once you’ve done that you may throw the GF file away.

The log file should never need to be used, unless there was some sort of problem in the METAPOST run, and need not be ordinarily kept.

74 Acquiring bitmap fonts

When CTAN was established, most people would start using \TeX{} with a 300 dots-per-inch (dpi) laser printer, and sets of Computer Modern bitmap fonts for this resolution are available on CTAN: \texttt{fonts/cm/pk/pk300.zip} (for write-black printer engines) and \texttt{fonts/cm/pk/pk300w.zip} (for write-white engines).

At that time, there were regular requests that CTAN should hold a wider range of resolutions, but they were resisted for two reasons:

1. When a bitmap font is created with METAPOST, it needs to know the characteristics of the device; who knows what 600 or 1270 dpi device you have? (Of course, this objection applies equally well to 300 dpi printers.)

2. Bitmap fonts get \textit{big} at high resolutions. Who knows what fonts at what sizes people are going to need?

Fortunately, (\LaTeX) distribution technology has put a stop to these arguments: most (if not all) current distributions generate bitmap fonts as needed, and cache them for later re-use. The impatient user, who is determined that all bitmap fonts should be created once and for all, may be supported by scripts such as \texttt{allcm} (distributed with \TeX{}, at least; otherwise such a person should consult question 72).

If your output is to a PostScript-capable device, it may be worth switching to Type 1 versions of the CM fonts. Two free versions are currently available; the older (\texttt{bakoma}) is somewhat less well produced than the \texttt{bluesky} fonts, which were originally professionally produced and sold, but were then donated to the public domain by their originators Y&Y and Bluesky Research, in association with the AMS. Unfortunately, the coverage of the sets is slightly different, but the present author hasn’t found the need to use \texttt{bakoma} since \texttt{bluesky} became available. In recent years, several other ‘METAPOST’ fonts have become available in Type 1 format; it’s common never to find the need of generating bitmap fonts for any purpose other than previewing (see question 77).

The commercial font suppliers continue just to keep ahead of the free software movement, and provide Type 1 versions of the EC fonts, CM-style Cyrillic fonts, as well as a range of mathematical fonts to replace those in the CM family (see question 80).

\texttt{bakoma}: \texttt{fonts/cm/ps-type1/bakoma}

\texttt{bluesky}: \texttt{fonts/cm/ps-type1/bluesky}

75 Making MetaPost output display in Ghostscript

MetaPost ordinarily expects its output to be included in some context where the ‘standard’ METAPOST fonts (that you’ve specified) are already defined — for example, as a figure in \TeX{} document. If you’re debugging your MetaPost code, you may want to view it in Ghostscript (or some other PostScript previewer). However, the PostScript ‘engine’ in Ghostscript \textit{doesn’t} ordinarily have the fonts loaded, and you’ll experience an error such as

\begin{verbatim}
Error: /undefined in cmmi10
\end{verbatim}

There is provision in MetaPost for avoiding this problem: issue the command \texttt{prologues := 2;} at the start of the \texttt{.mp} file.

Unfortunately, the PostScript that MetaPost inserts in its output, following this command, is incompatible with ordinary use of the PostScript in inclusions into (\LaTeX) \TeX{} documents, so it’s best to make the \texttt{prologues} command optional. Furthermore, MetaPost takes a very simple-minded approach to font encoding: since \TeX{} font encodings regularly confuse sophisticated minds, this can prove troublesome. If you’re suffering such problems (the symptom is that characters disappear, or are wrongly
presented) the only solution is to view the ‘original’ metapost output after processing through \texttt{LATEX} and \texttt{dvips}.

Conditional compilation may be done either by inputting \texttt{MyFigure.mp} indirectly from a simple wrapper \texttt{MyFigureDisplay.mp}:

\begin{verbatim}
prologues := 2;
input MyFigure
\end{verbatim}

or by issuing a shell command such as

\begin{verbatim}
mp '\prologues:=2; input MyFigure'
\end{verbatim}

(which will work without the quote marks if you’re not using a Unix shell).

A suitable \texttt{LATEX} route would involve processing \texttt{MyFigure.tex}, which contains:

\begin{verbatim}
\documentclass{article}
\usepackage{graphicx}
\begin{document}
\thispagestyle{empty}
\includegraphics{MyFigure.1}
\end{document}
\end{verbatim}

Processing the resulting DVI file with the \texttt{dvips} command

\begin{verbatim}
dvips -E -o MyFigure.eps MyFigure
\end{verbatim}

would then give a satisfactory Encapsulated PostScript file.

\section*{PostScript and \LaTeX}

\subsection*{76 Using PostScript fonts with \LaTeX}

In order to use PostScript fonts, \LaTeX{} needs \texttt{metric} (called TFM) files. Several sets of metrics are available from the archives; for mechanisms for generating new ones, see question \ref{question:78}. You also need the fonts themselves; PostScript printers come with a set of fonts built in, but to extend your repertoire you almost invariably need to buy from one of the many commercial font vendors (see, for example, question \ref{question:80}).

If you use \texttt{LATEX2\epsilon}, the best way to get PostScript fonts into your document is to use the \texttt{PSNFSS} package maintained by Walter Schmidt; it’s supported by the \texttt{LATEX3} project team, so bug reports can and should be submitted. \texttt{PSNFSS} gives you a set of packages for changing the default roman, sans-serif and typewriter fonts; \texttt{e.g.}, \texttt{times.sty} will set up Times Roman, Helvetica and Courier in place of Computer Modern, while \texttt{avant.sty} just changes the sans-serif family to AvantGarde. To go with these packages, you will need the font metric files (watch out for encoding problems! — see question \ref{question:78}) and font description (.fd) files for each font family you want to use. Many sets of metrics, etc., can be obtained from the \texttt{psfonts} area of CTAN, arranged by vendor (\texttt{e.g.}, Adobe, Monotype, \texttt{etc.}). For convenience, metrics for the common ‘35’ PostScript fonts found in most printers are provided with \texttt{PSNFSS}, packaged as the “Laserwriter set”.

For older versions of \texttt{LATEX} there are various schemes, of which the simplest to use is probably the \texttt{PSLATEX} macros distributed with \texttt{dvips}.

For Plain \LaTeX{}, you load whatever fonts you like; if the encoding of the fonts is not the same as Computer Modern it will be up to you to redefine various macros and accents, or you can use the font re-encoding mechanisms available in many drivers and in \texttt{ps2pk} and \texttt{afm2tfm}.

Victor Eijkhout’s Lollipop package (see question \ref{question:14}) supports declaration of font families and styles in a similar way to \texttt{LATEX}’s NFSS, and so is easy to use with PostScript fonts.

Some common problems encountered are discussed elsewhere (see question \ref{question:79}).

\texttt{Laserwriter set of 35 fonts}: \url{macros/latex/required/psnfss/lw35nfss.zip}
\texttt{Lollipop}: \url{macros/lollipop}
\texttt{psfonts}: \url{Browse fonts/psfonts}
\texttt{psnfss}: \url{macros/latex/required/psnfss}
77 Previewsing files using Type 1 fonts

Until recently, free \TeX\ previewers have only been capable of displaying bitmap PK fonts. (The most recent releases of \textit{xdvi} sport a Type 1 font renderer.) Other previewers of the current generation offer automatic generation of the requisite PK files (using \textit{gsftopk}, or similar, behind the scenes). If your previewer isn't capable of this, you have three options:

1. Convert the DVI file to PostScript and use a PostScript previewer. Some systems offer this capability as standard, but most people will need to use a separate previewer such as \textit{ghostscript} or \textit{ghostscript}-based viewers such as \textit{ghostview} or shareware offering \textit{gsview}.
2. Under Windows on a PC, or on a Macintosh, let Adobe Type Manager display the fonts. Textures (Macintosh) works like this, and under Windows you can use Y\&Y's \textit{dviwindo} for bitmap-free previewing. (See question 51 for details of these suppliers.)
3. If you have the PostScript fonts in Type 1 format, use \textit{ps2pk} or \textit{gsftopk} (designed for use with the \textit{ghostscript} fonts) to make PK bitmap fonts which your previewer will understand. This can produce excellent results, also suitable for printing with non-PostScript devices. Check the legalities of this if you have purchased the fonts. The very commonest PostScript fonts such as Times and Courier come in Type 1 format on disk with Adobe Type Manager (often bundled with Windows, and part of OS/2).

\textit{ghostscript}: Browse nonfree/support/ghostscript
\textit{ghostview}: Browse support/ghostscript/gnu/ghostview
\textit{gsftopk}: fonts/utilities/gsftopk
\textit{gsview}: Browse nonfree/support/ghostscript/gsview
\textit{ps2pk}: fonts/utilities/ps2pk
\textit{xdvi}: dviware/xdvi

78 \TeX\ font metric files for PostScript fonts

Font vendors such as Adobe supply metric files for each font, in AFM (Adobe Font Metric) form; these can be converted to TFM (\TeX\ Font Metric) form. The CTAN archives have prebuilt metrics which will be more than enough for many people; but you may need to do the conversion yourself if you have special needs or acquire a new font. One important question is the encoding of (Latin character) fonts; while we all more or less agree about the position of about 96 characters in fonts (the basic ASCII set), the rest of the (typically) 256 vary. The most obvious problems are with floating accents and special characters such as the 'pounds sterling' sign. There are three ways of dealing with this: either you change the \TeX\ macros which reference the characters (not much fun, and error-prone); or you change the encoding of the font (easier than you might think); or you use virtual fonts (see question 33) to pretend to \TeX\ that the encoding is the same as it is used to. If you use \LaTeX\ 2\epsilon, it allows for changing the encoding in \TeX; read the \LaTeX\ Companion (see question 19) for more details. In practice, if you do much non-English (but Latin script) typesetting, you are strongly recommended to use the \texttt{fontenc} package with option 'T1' to select T1 ('Cork': see question 38) encoding.

Alan Jeffrey's \textit{fontinst} package is an AFM to TFM converter written in \TeX; it is used to generate the files used by \LaTeX\ 2\epsilon's PSNFSS package to support use of PostScript fonts. It is a sophisticated package, not for the faint-hearted, but is powerful enough to cope with most needs. Much of its power relies on the use of virtual fonts (see question 33).

For slightly simpler problems, Rokicki's \textit{afm2tfm}, distributed with \textit{dvips}, is fast and efficient; note that the metrics and styles that come with \textit{dvips} are not currently \LaTeX\ 2\epsilon compatible.

For the Macintosh, there is a program called \textit{EdMetrics} which does the job (and more). It comes with the Textures distribution, but is in fact free software, and is available on CTAN.
MS-DOS users can buy Y&Y’s (see question 51) Font Manipulation Tools package which includes a powerful \texttt{afm2tfm} program among many other goodies.

\texttt{dvips}: dviware/dvips
\texttt{EdMetrics}: systems/mac/textures/utilities/EdMetrics.sea.hqx
\texttt{fontinst}: fonts/utilities/fontinst
\textit{PS font metrics}: Browse fonts/psfonts (this directory is at the root of a really rather large tree)

79 \textbf{Deploying Type 1 fonts}

For the \LaTeX\ user trying to use the PSNFSS (see question 76) package, three questions may arise.

First, you have to declare to the DVI driver that you are using PostScript fonts; in the case of \texttt{dvips}, this means adding lines to the \texttt{psfonts.map} file, so that \texttt{dvips} will know where the proper fonts are, and won’t try to find PK files. If the font isn’t built into the printer, you have to acquire it (which may mean that you need to purchase the font files).

Second, your previewer must know what to do with the fonts: see question 77.

Third, the stretch and shrink between words is a function of the font metric; it is not specified in AFM files, so different converters choose different values. The PostScript metrics that come with PSNFSS used to produce quite tight setting, but they were revised in mid 1995 to produce a compromise between American and European practice. Really sophisticated users may not find even the new the values to their taste, and want to override them. Even the casual user may find more hyphenation or overfull boxes than CMR produces; but CMR is extremely generous.

80 \textbf{Choice of scalable outline fonts}

If you are interested in text alone, you can use any of over 20,000 fonts(!) in Adobe Type 1 format (called ‘PostScript fonts’ in the \TeX\ world and ‘ATM fonts’ in the DTP world), or any of several hundred fonts in TrueType format. That is, provided of course, that your previewer and printer driver support scalable outline fonts.

\TeX\ itself only cares about metrics, not the actual character programs. You just need to create a \TeX\ metric file TFM using some tool such as \texttt{afm2tfm} (possibly in combination with \texttt{vptovf}), \texttt{afm2tfm} (from Y&Y, see question 51) or \texttt{fontinst}. For the previewer or printer driver you need the actual outline font files themselves (\texttt{pfa} for Display PostScript, \texttt{pfb} for ATM on IBM PC, Mac outline font files on Macintosh).

If you also need mathematics, then you are severely limited by the demands that \TeX\ makes of maths fonts (for details, see the paper by B.K.P. Horn in \textit{TUGboat} \textbf{14}(3)). For maths, then, there are relatively few choices (though the list is at last growing). There are several font families available that are based on Knuth’s original designs, and some that complement other commercial text font designs; one set (MicroPress’s ‘informal math’) stands alone.

\textit{Computer Modern} (75 fonts — optical scaling) Donald E. Knuth
The CM fonts were originally designed in \texttt{METAFONT}, but are also now available in scalable outline form. There are commercial as well as public domain versions, and there are both Adobe Type 1 and TrueType versions. The AMS set of these fonts has been well hand-hinted, and is freely available from \texttt{fonts/cm/ps-type1/bluesky}

\textit{AMS fonts} (52 fonts, optical scaling) The AMS
This set of fonts offers adjuncts to the CM set, including two sets of symbol fonts (\texttt{msam} and \texttt{msbm}) and Euler text fonts. These are not a self-standing family, but merit discussion here (not least because several other mimic the symbol fonts). Freely-available Type 1 versions of the fonts are available from \texttt{fonts/amsfonts/ps-type1}

\textit{Computer Modern Bright} (62 fonts — optical scaling) Walter Schmidt
CM Bright is a family of sans serif fonts, based on Knuth’s CM fonts. It comprises the fonts necessary for mathematical typesetting, including AMS symbols, as well as text and text symbol fonts of various shapes. The collection comes with
its own set of files for use with \LaTeX{}. The CM Bright fonts are supplied in Type 1 format by MicroPress, Inc.

For further details (including samples) see
http://www.micropress-inc.com/samples/cmbright.htm

Concrete Math (25 fonts — optical scaling) Ulrik Vieth
The Concrete Math font set was derived from the Concrete Roman typefaces designed by Knuth. The set provides a collection of math italics, math symbol, and math extension fonts, and fonts of AMS symbols that fit with the Concrete set, so that Concrete may be used as a complete replacement for Computer Modern. Since Concrete is considerably darker than CM, the family may particularly attractive for use in low-resolution printing or in applications such as posters or transparencies. Concrete Math fonts, as well as Concrete Roman fonts, are supplied in Type 1 format by MicroPress, Inc.

For further information (including samples) see
http://www.micropress-inc.com/samples/cfonts.htm

BA Math (13 fonts) MicroPress Inc.
BA Math is a family of serif fonts, inspired by the elegant and graphically perfect font design of John Baskerville. BA Math comprises the fonts necessary for mathematical typesetting (maths italic, math symbols and extensions) in normal and bold weights. The family also includes all OT1 and T1 encoded text fonts of various shapes, as well as fonts with most useful glyphs of the TS1 encoding. Macros for using the fonts with Plain \TeX{}, \LaTeX{} 2.09 and current \LaTeX{} are provided.

For further details (including samples) see
http://www.micropress-inc.com/samples/bafonts.htm

HV Math (14 fonts) MicroPress Inc.
HV Math is a family of sans serif fonts, inspired by the Helvetica (TM) typeface. HV Math comprises the fonts necessary for mathematical typesetting (maths italic, maths symbols and extensions) in normal and bold weights. The family also includes all OT1 and T1 encoded text fonts of various shapes, as well as fonts with most useful glyphs of the TS1 encoding. Macros for using the fonts with Plain \TeX{}, \LaTeX{} 2.09 and current \LaTeX{} are provided. Bitmaped copies of the fonts are available free, at fonts/micropress/hvmath

For further details (and samples) see
http://www.micropress-inc.com/samples/hfonts.htm

Informal Math (7 outline fonts) MicroPress Inc.
Informal Math is a family of fanciful fonts loosely based on the Adobe’s Tekton (TM) family, fonts which imitate handwritten text. Informal Math comprises the fonts necessary for mathematical typesetting (maths italic, maths symbols and extensions) in normal weight, as well as OT1 encoded text fonts in upright and oblique shapes. Macros for using the fonts with Plain \TeX{}, \LaTeX{} 2.09 and current \LaTeX{} are provided.

For further details (including samples) see
http://www.micropress-inc.com/samples/ifonts.htm

Lucida Bright with Lucida New Math (25 fonts) Chuck Bigelow and Kris Holmes
Lucida is a family of related fonts including serifed, sans serif, sans serif fixed width, calligraphic, blackletter, fax, Kris Holmes’ connected handwriting font, etc.; they’re not as ‘spindly’ as Computer Modern, with a large x-height, and include a larger set of maths symbols, operators, relations and delimiters than CM (over 800 instead of 384: among others, it also includes the AMS \mathbb{} and \mathcal{} symbol sets). ‘Lucida Bright Expert’ (14 fonts) adds serifed fixed width, another handwriting font, smallcaps, bold maths, upright ‘maths italic’, etc., to the set. The distribution includes support for use with Plain \TeX{} and \LaTeX{} 2.09. Support under \LaTeX{} 2ε is provided in PSNFSS (see question 76) thanks to Sebastian Rahtz and David Carlisle.

For a sample, see http://www.YandY.com/download/chironlb.pdf

MathTime 1.1 (3 fonts) Publish or Perish (Michael Spivak)
The set contains maths italic, symbol, and extension fonts, designed to work well
with Times-Roman. These are typically used with Times, Helvetica and Courier (which are resident on many printers, and which are supplied with some PC versions). In addition you may want to complement this basic set with Adobe’s Times Smallcap, and perhaps the set of Adobe ‘Math Pi’ fonts, which include blackboard bold, blackletter, and script faces.

For a sample, see http://www.YandY.com/download/chironmt.pdf

MathTime Plus (12 fonts) Publish or Perish (Michael Spivak)

Adds bold and heavy versions of the basic math fonts, as well as upright math \textquotedblleft italic	extquotedblright. There are also Greek letters for use in typesetting terms commonly used in physics, as well as regular and bold Script faces. Both MathTime distributions include support for use with Plain \TeX and \TeX 2.09 (including code to link in Adobe Math Pi 2 and Math Pi 6). Support under \TeX 2\epsilon is provided in PSNFSS (see question 76) thanks to Frank Mittelbach and David Carlisle.

For a sample, see http://www.YandY.com/download/mathplus.pdf

TM Math (14 fonts) MicroPress Inc.

TM Math is a family of serif fonts, inspired by the Times (TM) typeface. TM Math comprises the fonts necessary for mathematical typesetting (maths italic, maths symbols and extensions) in normal and bold weights. The family also includes all OT1 and T1 encoded text fonts of various shapes, as well as fonts with most useful glyphs of the TS1 encoding. Macros for using the fonts with Plain \TeX, \TeX 2.09 and current \TeX are provided. Bitmaped copies of the fonts are available free, at fonts/micropress/tmmath

For further details (and samples) see http://www.micropress-inc.com/samples/tfonts.htm

mathpazo version 1.001 (5 fonts) by Diego Puga

The Pazo Math fonts are a family of type 1 fonts suitable for typesetting maths in combination with the Palatino family of text fonts. Four of the five fonts of the distribution are maths alphabets, in upright and italic shapes, medium and bold weights; the fifth font contains a small selection of \textquotedblleft blackboard bold\textquotedblright characters (chosen for their mathematical significance). The distribution includes virtual fonts, a package file and .fd files to facilitate the use of the fonts with \TeX; the whole set is licensed under the GPL, with legalese permitting the use of the fonts in published documents.

pxfont set version 1.0 (26 fonts) by Young Ryu

The pxfont set consists of

- virtual text fonts using Adobe Palatino (or the URW replacement used by Ghostscript) with modified plus, equal and slash symbols;
- maths alphabets using times;
- maths fonts of all symbols in the computer modern maths fonts (cmay, cmmi, cmex and the Greek letters of cmr)
- maths fonts of all symbols corresponding to the AMS fonts (msam and msbm);
- additional maths fonts of various symbols.

The text fonts are available in OT1, T1 and LY1 encodings, and TS encoded symbols are also available. The sans serif and monospaced fonts supplied with the txfont set (see below) may be used with pxfonts; the txfonts set should be installed whenever pxfonts are. \TeX, dvips and PDF\TeX support files are included. View the documentation, or download the fonts from from fonts/pxfonts

txfont set version 3.1 (42 fonts) by Young Ryu

The txfont set consists of

- virtual text fonts using Adobe Times (or the URW replacement used by Ghostscript) with modified plus, equal and slash symbols;
- matching sets of sans serif and monospace (\textquoteleft typewriter\textquoteright) fonts (the sans serif set is based on Adobe Helvetica);
- maths alphabets using times;
• maths fonts of all symbols in the computer modern maths fonts (cmay, cmmi, cmex and the Greek letters of cmr)
• maths fonts of all symbols corresponding to the AMS fonts (msam and msbm);
• additional maths fonts of various symbols.

The text fonts are available in OT1, T1 and LY1 encodings, and TS encoded symbols are also available. \LaTeX, dvips and \pdflatex support files are included. View the documentation, or download the fonts from from fonts/txtfonts

Adobe Lucida, LucidaSans and LucidaMath (12 fonts)
Lucida and LucidaMath are generally considered to be a bit heavy. The three maths fonts contain only the glyphs in the CM maths italic, symbol, and extension fonts. Support for using LucidaMath with \TeX is not very good; you will need to do some work reencoding fonts etc. (In some sense this set is the ancestor of the LucidaBright plus LucidaNewMath font set.)

Proprietary fonts Various sources.
Since having a high quality font set in scalable outline form that works with \TeX can give a publisher a real competitive advantage, there are some publishers that have paid (a lot) to have such font sets made for them. Unfortunately, these sets are not available on the open market, despite the likelihood that they’re more complete than those that are.

Mathptm and mathpplle Alan Jeffrey, Walter Schmidt and others.
This set contains maths italic, symbol, extension, and roman virtual fonts, built from Adobe Times, Symbol, Zapf Chancery, and the Computer Modern fonts. The resulting mixture is not really entirely acceptable, but can pass in some circumstances. The real advantage is that the mathptm and mathpple fonts are free, and the resulting PostScript files can be freely exchanged. Support under \LaTeXe is available in PSNFSS (see question 76).

The very limited selection of commercial maths font sets is a direct result of the fact that a maths font has to be explicitly designed for use with \TeX and as a result it is likely to lose some of its appeal in other markets. Furthermore, the \TeX market for commercial fonts is minute (in comparison, for example, to Microsoft TrueType font pack #1, which sold something like 10 million copies in a few weeks after release of Windows 3.1!).

Text fonts in Type 1 format are available from many vendors including Adobe, Monotype, Bitstream. Avoid cheap rip-offs: not only are you rewarding unethical behaviour, destroying the cottage industry of innovative type design, but you are also very likely to get junk. The fonts may not render well (or at all under ATM), may not have the ‘standard’ complement of 228 glyphs, or may not include metric files (needed to make TFM files). Also, avoid TrueType fonts from all but the major vendors. TrueType fonts are an order of magnitude harder to ‘hint’ properly than Type 1 fonts and hence TrueType fonts from places other than Microsoft and Apple may be suspect. In any case you may find other problems with TrueType fonts such as service bureaux not accepting jobs calling for them.

81 Including a PostScript figure in (B)\LaTeX
\LaTeX has a standard package for graphics inclusion, rotation, colour, and other driver-related features. The package is documented in the second edition of Lamport’s \LaTeX book, as well as in the \LaTeX Graphics Companion (see question 19). The \LaTeX package is also available in a form suitable for use with Plain \TeX.

The distribution itself comes with documentation, and a processed copy (grfguilde.ps) is available in the distribution so that users can read documentation without first installing the package.

The graphics package comes with a relative, graphix, which provides more convenient means of scaling and otherwise manipulating graphics. The packages are usually configured to the DVI1 processor you use by means of a .cfg file, but configuration by means of package options is also possible. The range of types of graphical file you may include differs according to the system you’re using.
The figures themselves do not become part of the DVI file, but are only included when you use a DVI to PostScript conversion program. The \special commands (see question 34) used to pass pointers to the graphics files, and other information, are potentially different for every DVI processor (which is why the graphics package must be configured for the processor you use).

Since the \special commands used are typically not their own, some DVI pre-viewers can’t cope with them. More modern ones (notably xdvi, MikTeX’s yap and fpTeX’s windvi) can pass the figure to a properly configured ghostscript installation for rendering into a bitmap for screen viewing.

There are two rather good documents on CTAN addressing figure production, with rather different emphasis. Keith Reckdahl’s epslatex covers the standard \LaTeX facilities, as well as some of the supporting packages, notably subfigure and psfrag. Anil K. Goel’s “Figures in \LaTeX” (figsinltx), covers the different ways in which you might generate figures, and the old (\LaTeX 2.09) ways of including them into documents.

epslatex.pdf: info/epslatex.pdf; the document is also available in PostScript format as info/epslatex.ps

figsinltx: info/figsinltx.ps

ghostscript: Browse nonfree/support/ghostscript

graphics: The whole bundle for \LaTeX (including graphics.sty) is found in macros/latex/required/graphics; to use the packages with Plain \TeX, you should also acquire:

graphicx.tex: macros/plain/graphics which contains various wrappers and emulations of commands for the use of the \TeX version.

psfrag.sty: macros/latex/contrib/supported/psfrag

subfigure.sty: macros/latex/contrib/supported/subfigure

Bibliographies

82 Using \BibTeX with Plain \TeX

The file btzmac.tex contains macros and documentation for using \BibTeX with Plain \TeX, either directly or with Eplain (see question 13). See question 26 for more information about \BibTeX itself.

btzmac.tex: macros/eplain/btzmac.tex

83 \BibTeX doesn’t understand my lists of names

\BibTeX has a strict syntax for lists of authors’ (or editors’) names in the \BibTeX data file; if you write the list of names in a “natural”-seeming way, the chances are you will confuse \BibTeX, and the output produced will be quite different from what you had hoped.

Names should be expressed in one of the forms

First Last
Last, First
Last, Suffix, First

and lists of names should be separated with “and”. For example:

AUTHOR = {Fred Q. Bloggs, John P. Doe \& Robin Fairbairns}

falls foul of two of the above rules: a syntactically significant comma appears in an incorrect place, and \& is being used as a name separator. The output of the above might be something like:

John P. Doe \& Robin Fairbairns Fred Q. Bloggs

because “John P. Doe & Robin Fairbairns” has become the ‘first name’, while “Fred Q. Bloggs” has become the ‘last name’ of a single person. The example should have been written:

AUTHOR = {Fred Q. Bloggs and John P. Doe and Robin Fairbairns}
Some bibliography styles implement clever acrobatics with very long author lists. You can force truncation by using the pseudo-name “others”, which will usually translate to something like “et al” in the typeset output. So, if Mr. Bloggs wanted to distract attention from his co-authors, he would write:

\texttt{AUTHOR = \{Fred Q. Bloggs and others\}}

84 Separate bibliographies per chapter?

A separate bibliography for each “chapter” of a document can be provided with the package `chapterbib` (which comes with a bunch of other good bibliographic things). The package allows you a different bibliography for each included file (i.e., despite the package’s name, the availability of bibliographies is related to the component source files of the document rather than to the chapters that logically structure the document).

The package `bibunits` ties bibliographies to logical units within the document: the package will deal with chapters and sections (as defined by \LaTeX itself) and also defines a \texttt{bibunit} environment so that users can select their own structuring.

\texttt{chapterbib.sty}: \texttt{macros/latex/contrib/supported/cite}
\texttt{bibunits.sty}: \texttt{macros/latex/contrib/supported/bibunits}

85 Multiple bibliographies?

If you’re thinking of multiple bibliographies tied to some part of your document (such as the chapters within the document), please see question 84.

For more than one bibliography, there are three options.

The `multibib` package offers a very simple interface: it redefines the bibliography commands so that each time you use any one of them, you tell it which bibliography you want the citations to go to or to come from. The \texttt{\bibliography} command itself also takes a further extra argument that says what title to use for the resulting section or chapter (i.e., it patches \texttt{\refname} and \texttt{\bibname} — see question 153 — in a \texttt{babel}-safe way.

The `multibib` package allows you to define a series of “additional topics”, each of which comes with its own series of bibliography commands (e.g., a topic \texttt{sec} for \texttt{secondary literature} would have commands \texttt{\citesec}, \texttt{\nocitesec}, \texttt{\bibliographystylesec} and \texttt{\bibliographysec}. You can pull citations from any bibliography (.bib file) into any one of the multiple bibliographies (indeed, they may all come from the same .bib file).

The `bibtopic` package allows you separately to cite several different bibliographies. At the appropriate place in your document, you put a sequence of \texttt{bt\textit{Sect}} environments (each of which specifies a bibliography database to scan) to typeset the separate bibliographies. Thus, one might have

\begin{verbatim}
\begin{bt\textit{Sect}}{books}
\section{References from books}
\btPrintCited
\end{bt\textit{Sect}}
\begin{bt\textit{Sect}}{articles}
\section{References from articles}
\btPrintCited
\end{bt\textit{Sect}}
\end{verbatim}

There is also a command \texttt{\btPrintNotCited}, which gives the rest of the content of the database (if nothing has been cited from the database, this is equivalent to \LaTeX standard \texttt{\nocite*}).

\texttt{bibtopic.sty}: \texttt{macros/latex/contrib/supported/bibtopic}
\texttt{multibib.sty}: \texttt{macros/latex/contrib/supported/multibib}

86 Putting bibliography entries in text

This is a common requirement for journals and other publications in the humanities. Sometimes the requirement is for the entry to appear in the running text of the document, while other styles require that the entry appear in a footnote.
Options for entries in running text are

- The package `bibentry`, which puts slight restrictions on the format of entry that your `.bst` file generates, but is otherwise undemanding of the bibliography style.
- The package `inlinebib`, which requires that you use its `inlinebib.bst`
- The package `jurabib`, which was originally targeted at German law documents, and has comprehensive facilities for the manipulation of citations. The package comes with four bibliography styles that you may use: `jurabib.bst`, `jhuman.bst` and two Chicago-like ones.

Options for entries in footnotes are

- The package `footbib`, and
- The package `jurabib`, again.

\texttt{bibentry.sty}: Distributed with \texttt{macros/latex/contrib/supported/natbib}
\texttt{footbib.sty}: \texttt{macros/latex/contrib/supported/footbib}
\texttt{inlinebib.sty}: \texttt{biblio/bibtex/contrib/inlinebib}
\texttt{jurabib.sty}: \texttt{macros/latex/contrib/supported/jurabib}

87 Sorting and compressing citations

If you give \LaTeX \cite{fred,joe,harry,min}, its default commands could give something like “[2,6,4,3]”; this looks awful. One can of course get the things in order by rearranging the keys in the \cite command, but who wants to do that sort of thing for no more improvement than “[2,3,4,6]”?

The \texttt{cite} package sorts the numbers and detects consecutive sequences, so creating “[2–4,6]”. The \texttt{natbib} package, with the numbers and sort&compress options, will do the same when working with its own numeric bibliography styles (\texttt{plainnat.bst} and \texttt{unsrtnat.bst}).

If you might need to make hyperreferences to your citations, \texttt{cite} isn’t adequate. If you add the \texttt{hypernat} package:

\begin{verbatim}
\usepackage[...]{hyperref}
\usepackage[numbers,sort&compress]{natbib}
\usepackage{hypernat}
...
\bibliographystyle{plainnat}
\end{verbatim}

the \texttt{natbib} and \texttt{hyperref} packages will interwork.

\texttt{cite.sty}: \texttt{macros/latex/contrib/supported/cite}
\texttt{hypernat.sty}: \texttt{macros/latex/contrib/supported/misc/hypernat.sty}
\texttt{hyperref.sty}: \texttt{macros/latex/contrib/supported/hyperref}
\texttt{plainnat.bst}: \texttt{macros/latex/contrib/supported/numerical}
\texttt{unsrtnat.bst}: \texttt{macros/latex/contrib/supported/numerical}

88 Creating a bibliography style

It is possible to write your own: the standard bibliography styles are distributed in a commented form, and there is a description of the language (see question 26). However, it must be admitted that the language in which \LaTeX styles are written is pretty obscure, and one would not recommend anyone who’s not a confident programmer to write their own, though minor changes to an existing style may be within the grasp of many.

If your style isn’t too ‘far out’, you can probably generate it by using the facilities of the \texttt{custom-bib} bundle. This contains a file \texttt{makebst.tex}, which runs you through a text menu to produce a file of instructions, with which you can generate your own `.bst` file. This technique doesn’t deal with entirely new styles of document (the present author needed “standards committee papers” and “ISO standards” for his dissertation; another commonly-required type is the Web page — see question 104).

\LaTeX documentation: \texttt{biblio/bibtex/distrib/doc}
\texttt{makebst.tex}: Distributed with \texttt{macros/latex/contrib/supported/custom-bib}
89 Capitalisation in \texttt{BIBTE	extsc{x}}

The standard \texttt{BIBTE	extsc{x}} bibliography styles impose fixed ideas about the capitalisation of titles of things in the bibliography. While this is not unreasonable by \texttt{BIBTE	extsc{x}}'s lights (the rules come from the \textit{Chicago Manual of Style}) it can be troublesome, since \texttt{BIBTE	extsc{x}} fails to recognise special uses (such as acronyms).

The solution is to enclose the letter or letters, whose capitalisation \texttt{BIBTE	extsc{x}} should not touch, in braces, as:

\begin{verbatim}
 title = \{The \{THE\} operating system\},
\end{verbatim}

Sometimes you find \texttt{BIBTE	extsc{x}} changing the case of a single letter inappropriately. No matter: the technique can be applied to single letters, as in:

\begin{verbatim}
 title = \{Te\{X\}niques and tips\},
\end{verbatim}

There’s more on the subject in the \texttt{BIBTE	extsc{x}} documentation (see question 26).

90 ‘String too long’ in \texttt{BIBTE	extsc{x}}

The \texttt{BIBTE	extsc{x}} diagnostic “Warning–you’ve exceeded 1000, the global-string-size, for entry \texttt{foo}” usually arises from a very large abstract or annotation included in the database. The diagnostic usually arises because of an infelicity in the coding of \texttt{abstract.bst}, or styles derived from it. (One doesn’t ordinarily output annotations in other styles.)

The solution is to make a copy of the style file (or get a clean copy from CTAN — \texttt{biblio/bibte/contrib/abstract.bst}), and rename it (e.g., on a long file-name system to \texttt{abstract-long.bst}). Now edit it: find function outputnonnull and

\begin{itemize}
 \item change its first line (line 60 in the version on CTAN) from "\{'s :=" to "\{ swap$, and
 \item delete its last line, which just says "$s" (line 84 in the version on CTAN).
\end{itemize}

Finally, change your \texttt{\bibliographystyle} command to refer to the name of the new file.

This technique applies equally to any bibliography style: the same change can be made to any similar outputnonnull function.

If you’re reluctant to make this sort of change, the only way forward is to take the entry out of the database, so that you don’t encounter \texttt{BIBTE	extsc{x}}’s limit, but you may need to retain the entry because it will be included in the typeset document. In such cases, put the body of the entry in a separate file:

\begin{verbatim}
@article{long.boring,
 author = "Fred Verbose",
 ...
 abstract = "\input{abstracts/long.tex}"
}
\end{verbatim}

In this way, you arrange that all \texttt{BIBTE	extsc{x}} has to deal with is the file name, though it will tell \texttt{TE	extsc{x}} (when appropriate) to include all the long text.

91 Multiple citations

The convention in physics journals is to “collapse” a group of related citations into a single entry in the bibliography. \texttt{BIBTE	extsc{x}}, by default, can’t cope with this arrangement, but the \texttt{mcite} package deals with the problem.

The package overloads the \texttt{\cite} command, so that citations of the form \texttt{\cite{paper1,paper2}} appear in the document as a single citation, and appear arranged appropriately in the bibliography itself. You need to alter the bibliography style (.bst) file you use; the package documentation tells you how to do that.

\texttt{mcite.sty}: \texttt{macros/latex/contrib/supported/mcite}
O Installing (L)\TeX files

92 Installing a new package

The first step in installing a new package for your \LaTeX system is to find where it is (see question 44) and then to get it, usually from CTAN (see question 45).

Ordinarily, you should download the whole distribution directory; the only occasion when this is not necessary is when you are getting something from one of the (L)\TeX contributed “misc” directories on CTAN; these directories contain collections of single files, which are supposedly complete in themselves.

A small package (smallpack) might be just a single .sty file (typically smallpack.sty) with the usage instructions either included as comments in the file or in a separate user manual or README file. More often a package pack will come as a pair of files, pack.ins and pack.dtx, written to be used with the \LaTeX doc system. The package code must be extracted from these files. If there is a README file as part of the package distribution, read it!

In the doc system, the user manual and documented package code is in the .dtx file, and the .ins file contains \LaTeX instructions on what code should be extracted from the .dtx file. To unpack a doc package ⟨pack⟩, do the following:

• Run latex on pack.ins. This will generate one or more files (normally a pack.sty file but there may be others depending on the particular package).
• Run latex on pack.dtx as a start to getting the user manual and possibly a commented version of the package code.
• Run latex again on pack.dtx, which should resolve any references and generate a Table of Contents if it was called for.
• \LaTeX may have said “No file pack.ind”; this is the source for the command index; if you want the index, process the raw material with:
 \begin{verbatim}
 makeindex -s gind.ist pack
 \end{verbatim}
and run \LaTeX again.
• Print and read pack.dvi

Sometimes a user manual is supplied separately from the .dtx file. Process this after doing the above, just in case the user manual uses the package it is describing.

Almost the final stage of the installation is to put the package file(s) ‘where \LaTeX can find them’. Where the magic place is, and how you put the files there depends on your particular \LaTeX system and how it is set up (see question 39 for general principles, question 93 for specific advice).

The final stage is to tell \LaTeX that there is a new file, or files, that it should be able to go and find. Most free \LaTeX systems maintain a database of the names and locations of latex-related files to enable faster searching. In these systems the database must be updated, using the script or program provided with the distribution for this purpose.

\TeX, \Fp\TeX

Run:

\begin{verbatim}
texhash
\end{verbatim}

\web2c

On a current \web2c distribution, texhash ought to work; if it doesn’t, run:

\begin{verbatim}
mktexlsr
\end{verbatim}

\MikT eX

On a MikTeX distribution earlier than v2.0, do:

\begin{verbatim}
Start→Programs→MikTeX→Maintenance→Refresh filename database
or get a DOS window and run:
initexmf --update-fndb
\end{verbatim}

On a MikTeX distribution v2.0 or later, do:

\begin{verbatim}
Start→Programs→MikTeX 2→MikTeX Options, and press the Update filename database button.
\end{verbatim}

Remember that a \usepackage⟨pack⟩ command must be put in the preamble of each document in which you want to use the pack package.

93 Where to put new files

Where precisely you put files that you have downloaded does depend on what \TeX distribution you have. However, assuming that you have one of the modern TDS-compliant distributions (such as \TeX, \Fp\TeX or \MikT eX) there are some general rules that you can follow:
(1) Always install new files in a local texmf tree. The root directory will be named something like:

- `teTeX`: /usr/share/texmf-local/
- `fpTeX`: c:\fptex\texmf.local\n- `mikTeX`: c:\localtexmf\n
Let’s write $TEXMF$ for this root, whatever it is for your system.

(2) In your local texmf tree, imitate the directory structure in your main tree. Here’s some examples of where files of given extensions should go:

- `.sty`, `.cls` or `.fd`: $TEXMF/tex/latex/<package>/
- `.dvi`, `.ps` or `.pdf`: $TEXMF/doc/latex/<package>/
- `.tfm`: $TEXMF/fonts/tfm/<supplier>//
- `.vf`: $TEXMF/fonts/vf/<supplier>//
- `.afm`: $TEXMF/fonts/afm/<supplier>//
- `.pfb`: $TEXMF/fonts/type1/<supplier>//
- `.ttf`: $TEXMF/fonts/truetype/<supplier>//

Where of course ⟨package⟩, ⟨font⟩ and ⟨supplier⟩ depend upon what’s appropriate for the individual file.

94 “Temporary” installation of (L)\TeX\ files

Operating systems and applications need to know where to find files: many files that they need are “just named” — the user doesn’t necessarily know where they are, but knows to ask for them. The commonest case, of course, is the commands whose names you type to a shell (yes, even Windows’ “MS-DOS prompt”) are using a shell to read what you type: many of the commands simply involve loading and executing a file, and the PATH variable tells the shell where to find those files.

Modern \TeX\ implementations come with a bunch of search paths built in to them. In most circumstances these paths are adequate, but one sometimes needs to extend them to pick up files in strange places: for example, we may wish to try a new bundle of packages before installing them ‘properly’ (see question 92). To do this, we need to change the relevant path as \TeX\ perceives it. However, we don’t want to throw away \TeX\’s built-in path (all of a sudden, \TeX\ won’t know how to deal with all sorts of things).

To extend a \TeX\ path, we define an operating system environment variable in ‘path format’, but leaving a gap which \TeX\ will fill with its built-in value for the path. The commonest case is that we want to place our extension in front of the path, so that our new things will be chosen in preference, so we leave our ‘gap to be filled’ at the end of the environment variable. The syntax is simple (though it depends which shell you’re actually using): so on a Unix-like system, using the `bash` shell, the job might be done like:

```bash
export TEXINPUTS=/tmp:
```

while in a Windows system, within a MS-DOS window, it would be:

```cmd
set TEXINPUTS=C:/\temp;
```

In either case, we’re asking \TeX\ to load files from the root disc temporary files directory; in the Unix case, the “empty slot” is designated by putting the path separator ‘:\’ on its own at the end of the line, while in the Windows case, the technique is the same, but the path separator is ‘;’.

Note that in either sort of system, the change will only affect instances of \TeX\ that are started from the shell where the environment variable was set. If you run \TeX\ from another window, it will use the original input path. To make a change of input path that will “stick” for all windows, set the environment variable in your login script or profile (or whatever) in a Unix system and log out and in again, or in autoexec.bat in a Windows system, and reboot the system.

While all of the above has talked about where \TeX\ finds its macro files, it’s applicable to pretty much any sort of file any \TeX\-related program reads — there are lots of these paths, and of their corresponding environment variables. In a web2c-based system, the copious annotations in the texmf.cnf system configuration file help you to learn which path names correspond to which type of file.
Special sorts of typesetting

95 Drawing with \TeX

There are many packages to do pictures in \TeX itself (rather than importing graphics created externally), ranging from simple use of \LaTeX picture environment, through enhancements like epic, to sophisticated (but slow) drawing with \PST\TeX. Depending on your type of drawing, and setup, four systems should be at the top of your list to look at:

1. pstricks; this gives you access to all the power of PostScript from \TeX itself, by sophisticated use of \specials. You need a decent DVI to PostScript driver (like dvips), but the results are worth it. The well-documented package gives you not only low-level drawing commands (and full colour) like lines, circles, shapes at arbitrary coordinates, but also high-level macros for framing text, drawing trees and matrices, 3D effects, and more.

2. MetaPost; you liked METAFONT, but never got to grips with font files? Try MetaPost (see question 4) — all the power of METAFONT, but it generates PostScript figures; MetaPost is nowadays part of most serious (\LaTeX) \TeX distributions. Knuth uses it for all his work...

3. Mfpic; you liked METAFONT, but can’t understand the language? The package makes up METAFONT or MetaPost code for you within using familiar-looking \TeX macros. Not quite the full power of METAFONT, but a friendlier interface.

4. You liked \PCT\TeX but don’t have enough memory or time? Look at Eitan Gurari’s dratex, which is as powerful as most other \TeX drawing packages, but is an entirely new implementation, which is not as hard on memory, is much more readable (and is fully documented).

dratex: graphics/dratex
mfpic: graphics/mfpic
pstricks: graphics/pstricks

96 Double-spaced documents in \LaTeX

Are you producing a thesis, and trying to obey regulations that were drafted in the typewriter era? Or are you producing copy for a journal that insists on double spacing for the submitted articles?

\LaTeX is a typesetting system, so the appropriate design conventions are for “real books”. If your requirement is from thesis regulations, find whoever is responsible for the regulations, and try to get the wording changed to cater for typeset theses (e.g., to say “if using a typesetting system, aim to make your thesis look like a well-designed book”). (If your requirement is from a journal, you’re probably even less likely to be able to get the rules changed, of course.)

If you fail to convince your officials, or want some inter-line space for copy-editing, try changing \baselinestretch: \renewcommand{\baselinestretch}{1.2} may be enough to give officials the impression you’ve kept to their regulations; \baselinestretch changes don’t take effect until you select a new font, so make the change in the preamble before any font is selected. Don’t try changing \baselineskip: its value is reset at any size-changing command.

Alternatively, use a line-spacing package; the only one currently supported is setspace (do not be tempted by doublespace: its performance under current \LaTeX is at best problematical). setspace has the advantage that it switches off double-spacing at places where you would want it to (footnotes, figure captions, and so on); it’s very troublesome to achieve this if you’re manipulating \baselinestretch yourself.

setspace.sty: macros/latex/contrib/supported/setspace/setspace.sty

97 Formatting a thesis in \LaTeX

Thesis styles are usually very specific to your University, so it’s usually not profitable to ask around for a package outside your own University. Since many Universities (in their eccentric way) still require double-spacing, you may care to refer to question 96.
If you want to write your own, a good place to start is the University of California style, but it’s not worth going to a lot of trouble. (If officials won’t allow standard typographic conventions, you won’t be able to produce an æsthetically pleasing document anyway!)

UC thesis style: macros/latex/contrib/supported/ucthesis

98 Flowing text around figures in \LaTeX

There are several \LaTeX packages that purport to do this, but they all have their limitations because the \TeX machine isn’t really designed to solve this sort of problem. Piet van Oostrum has conducted a survey of the available packages; he recommends:

picins Picins is part of a large bundle that allows inclusion of pictures (e.g., with shadow boxes, various MS-DOS formats, etc.). The command is:

\parpic(width, height)\{x-off, y-off\} [Options] [Position]
\{Picture\}

Paragraph text
All parameters except the Picture are optional. The picture can be positioned left or right, boxed with a rectangle, oval, shadowbox, dashed box, and a caption can be given which will be included in the list of figures.

Unfortunately (for those of us whose understanding of German is not good), the documentation is in German. Piet van Oostrum has written an English summary.

floatflt floatflt is an improved version (for \LaTeX\epsilon) of floatfig.sty, and its syntax is:

\begin{floatingfigure}\{options\}{width of figure}
figure contents
\end{floatingfigure}

There is a (more or less similar) floatingtable environment.
The tables or figures can be set left or right, or alternating on even/odd pages in a double-sided document.
The package works with the multicol package, but doesn’t work well in the neighbourhood of list environments (unless you change your \LaTeX document).

wrapfig wrapfig has syntax:

\begin{wrapfigure}\{height of figure in lines\}\{l,r,etc\}
\{overhang\}\{width\}
figure, caption, etc.
\end{wrapfigure}

The syntax of the wraptable environment is similar.
Height can be omitted, in which case it will be calculated by the package; the package will use the greater of the specified and the actual width. The \{l,r,etc\} parameter can also be specified as \{inside\} or \{outside\} for two-sided documents, and uppercase can be used to indicate that the picture should float. The overhang allows the figure to be moved into the margin. The figure or table will entered into the list of figures or tables if you use the \caption command.
The environments do not work within list environments that end before the figure or table has finished, but can be used in a parbox or minipage, and in twocolumn format.

floatflt.sty: macros/latex/contrib/other/floatflt
parpic.sty: systems/msdos/picins/picins.zip
picins documentation summary: macros/latex209/contrib/picins/picins.txt
wrapfig.sty: macros/latex/contrib/other/misc/wrapfig.sty

99 Alternative head- and footlines in \LaTeX

The standard \LaTeX document classes define a small set of ‘page styles’ which (in effect) specify head- and footlines for your document. The set defined is very restricted, but \LaTeX is capable of much more; people occasionally set about employing \LaTeX facilities to do the job, but that’s quite unnecessary — Piet van Oostrum has already done the work.
The package `fancyhdr` provides simple mechanisms for defining pretty much every head- or footline variation you could want; the directory also contains some (rather good) documentation and one or two smaller packages. `Fancyhdr` also deals with the tedious behaviour of the standard styles with initial pages (see question 173), by enabling you to define different page styles for initial and for body pages.

`fancyhdr.sty`: `macros/latex/contrib/supported/fancyhdr`

100 Including a file in verbatim in \[\LaTeX\]

A good way is to use Rainer Schöpf’s `verbatim`, which provides a command `\verbatiminput` that takes a file name as argument.

Another way is to use the `alltt` environment, which requires `alltt`. `alltt` interprets its contents ‘mostly’ verbatim, but executes any `\TeX` commands it finds: so one can say:

```
\begin{alltt}
\input{verb.txt}
\end{alltt}
```

of course, this is little use for inputting (L)\TeX source code...

`Moreverb` extends the facilities of `verbatim` package, providing a listing environment and a `\verbatiminput` command, which line-number the text of the file. The package also has a `\verbatimtabinput` command, that honours `\tab` characters in the input (the listing environment and command also both honour `\tab`).

`Fancyvrb` package offers configurable implementations of everything `verbatim` and `moreverb` have, and more besides. It is nowadays the package of choice for the discerning typesetter of verbatim text, but its wealth of facilities makes it a complex beast and study of the documentation is strongly advised.

`alltt.sty`: Part of the \[\LaTeX\] distribution.

`fancyvrb.sty`: `macros/latex/contrib/supported/fancyvrb`

`moreverb.sty`: `macros/latex/contrib/supported/moreverb`

`verbatim.sty`: Distributed as part of `macros/latex/required/tools`

101 Including line numbers in typeset output

For general numbering of lines, there are two packages for use with \[\LaTeX\], `lineno` (which permits labels attached to individual lines of typeset output) and `numline`.

Both of these packages play fast and loose with the \[\LaTeX\] output routine, which can cause problems: the user should beware...

If the requirement is for numbering verbatim text, `moreverb` or `fancyvrb` (see question 100) may be used.

One common use of line numbers is in critical editions of texts, and for this the `edmac` package (`macros/plain/contrib/edmac`) offers comprehensive support.

`fancyvrb.sty`: `macros/latex/contrib/supported/fancyvrb`

`lineno.sty`: `macros/latex/contrib/supported/lineno`

`moreverb.sty`: `macros/latex/contrib/supported/moreverb`

`numline.sty`: `macros/latex/contrib/supported/numline/numline.sty`

102 Generating an index in (L)\[\LaTeX\]

Making an index is not trivial; what to index, and how to index it, is difficult to decide, and uniform implementation is difficult to achieve. You will need to mark all items to be indexed in your text (typically with `\index` commands).

It is not practical to sort a large index within \[\LaTeX\], so a post-processing program is used to sort the output of one \[\LaTeX\] run, to be included into the document at the next run.

The following programs are available:

`makeindex` Comes with most distributions — a good workhorse, but is not well-arranged to deal with other sort orders than the canonical ASCII ordering.

The `makeindex` documentation is a good source of information on how to create your own index. `Makeindex` can be used with some \[\LaTeX\] macro packages other
than \LaTeX\, such as Eplain (see question 13), and \TeX\sis (whose macros can be used independently with Plain \TeX).

\texttt{idxtex} for \LaTeX{} under VMS, which comes with a glossary-maker called \texttt{glotex}.

\texttt{texindex} A witty little shell/\texttt{sed}-script-based utility for \LaTeX{} under Unix.

There are other programs called \texttt{texindex}, notably one that comes with the \TeXinfo distribution (see question 15).

\texttt{xindy} a recent development, designed for wide-ranging flexibility (including support for multilingual indexes), based on Common Lisp. \texttt{Xindy} was designed as a successor to \texttt{makeindex}, by a team that included the then-current maintainer of \texttt{makeindex}. As a result, it successfully addresses many of \texttt{makeindex}'s shortcomings, including the difficulties with sorting order. Sadly, its take-up is proving rather slow.

\begin{verbatim}
\texttt{idxtex}: indexing/glo+idxtex
\texttt{makeindex}: indexing/makeindex
\texttt{makeindex (Macintosh)}: systems/mac/macmakeindex2.12.sea.hqx
\texttt{texindex}: support/texindex
\texttt{texsis (system)}: nonfree/macros/texsis
\texttt{texsis (makeindex support)}: nonfree/macros/texsis/index/index.tex
\texttt{xindy}: support/xindy
\end{verbatim}

\section{103 Typesetting URLs}

URLs tend to be very long, and contain characters that would naturally prevent them being hyphenated even if they weren't typically set in \texttt{\ttfamily}, verbatim. Therefore, without special treatment, they often produce wildly overfull \texttt{\hbox}es, and their typeset representation is awful.

There are three packages that help solve this problem:

- The \texttt{Path} package, which defines a \texttt{\path} command. The command defines each potential break character as a \texttt{\discretionary}, and offers the user the opportunity of specifying a personal list of potential break characters. Its chief disadvantage is fragility in \LaTeX{} moving arguments.

- The \texttt{url} package, which defines an \texttt{\url} command (among others, including its own \texttt{\path} command). The command gives each potential break character a maths-mode 'personality', and then sets the URL itself (in the user's choice of font) in maths mode. It can produce (\LaTeX{}-style) 'robust' commands (see question 158) for use within moving arguments. Note that, because the operation is conducted in maths mode, spaces within the URL argument are ignored unless special steps are taken.

- The \texttt{hyperref} package, which uses the typesetting code of \texttt{url}, in a context where the typeset text forms the anchor of a link.

The author of this answer prefers the (rather newer) \texttt{url} package (directly or indirectly); both \texttt{path} and \texttt{url} work well with Plain \TeX{} (though of course, the fancy \LaTeX{} facilities of \texttt{url} don't have much place there). (\texttt{hyperref} isn't available in a version for use with Plain \TeX{}.)

\begin{verbatim}
\texttt{path.sty}: macros/latex/contrib/other/misc/path.sty
\texttt{url.sty}: macros/latex/contrib/other/misc/url.sty
\texttt{hyperref.sty}: macros/latex/contrib/other/misc/url.sty
\end{verbatim}

\section{104 Citing URLs with \BIBLaTeX}

There is no citation type for URLs, \textit{per se}, in the standard \BIBLaTeX{} styles, though Oren Patashnik (the author of \BIBLaTeX{}) is considering developing one such for use with the long-awaited \BIBLaTeX{} version 1.0.

The actual information that need be available in a citation of an URL is discussed at some length in the publicly available on-line \textit{extracts} of ISO 690–2; the techniques below do \emph{not} satisfy all the requirements of ISO 690–2, but they offer a solution that is at least available to users of today's tools.
Until the new version arrives, the simplest technique is to use the howpublished field of the standard styles’ @misc function. Of course, the strictures about typesetting URLs (see question 103) still apply, so the entry will look like:

```latex
@misc{..., 
  ..., 
  howpublished = "\url{http://...}"
}
```

Another possibility is that some conventionally-published paper, technical report (or even book) is also available on the Web. In such cases, a useful technique is something like:

```latex
@techreport{..., 
  ..., 
  note = "Also available as \url{http://...}"
}
```

There is good reason to use the url or hyperref packages in this context, since (by default) the \url command ignores spaces in its argument. \LaTeX{} has a habit of splitting lines it considers excessively long, and if there are no space characters for it to use as ‘natural’ breakpoints, \LaTeX{} will insert a comment (‘%’) character which is an acceptable character in a URL, so that \url will typeset it. If you’re using url, the way around the problem is to insert odd spaces inside the URL itself in the .bib file, to enable \LaTeX{} to make reasonable decisions about breaking the line. Note that the version of \url that comes with recent versions of the hyperref package doesn’t suffer from the ‘%’-end of line problem: hyperref spots the problem, and suppresses the unwanted characters.

A possible alternative approach is to use the harvard package (if its citation styles are otherwise satisfactory for you). Harvard bibliography styles all include a “url” field in their specification; however, the typesetting offered is somewhat feeble (though it does recognise and use \LaTeX{}2HTML macros if they are available, to create hyperlinks).

harvard: macros/latex/contrib/supported/harvard
hyperref: macros/latex/contrib/supported/hyperref
url: macros/latex/contrib/other/misc/url.sty

105 Typesetting music in \LaTeX{}

In the early days, a simple music package called mutex was written by Angelika Schofer and Andrea Steinbach, which demonstrated that music typesetting was possible; the package was very limited, and is no longer available. Daniel Taupin took up the baton, and developed Music\LaTeX{}, which allows the typesetting of polyphonic and other multiple-stave music; Music\LaTeX{} remains available, but is most definitely no longer recommended.

Music\LaTeX{} has been superseded by its successor MusiXTeX, which is a three-pass system (with a processor program that computes values for the element spacing in the music), and achieves finer control than is possible in the unmodified \TeX{}-based mechanism that Music\LaTeX{} uses. Daniel Taupin’s is the only version of MusiXTeX currently being developed (the original author, Andreas Egler, had an alternative version, but he is now working on a different package altogether).

Input to MusixTeX is extremely tricky stuff, and Don Simons’ preprocessor pmx is the preferred method of creating input for Taupin’s version. Pmx greatly eases use of MusixTeX, but it doesn’t support the full range of MusixTeX’s facilities directly; however, it does allow in-line MusixTeX code in pmx sources.

Dirk Laurie’s M-Tx allows preparation of music with lyrics; it operates “on top of” pmx

Another simple notation is supported by abc2mtex; this is a package designed to notate tunes stored in an ASCII format (abc notation). It was designed primarily for folk and traditional tunes of Western European origin (such as Irish, English and Scottish) which can be written on one stave in standard classical notation, and creates input intended for Music\LaTeX{}. However, it should be extendable to many other types of music.
Digital music fans can typeset notation for their efforts by using midi2tex, which translates MIDI data files into Music\TeX\ source code.

There is a mailing list for discussion of typesetting music in \TeX. To subscribe, send mail to mutex-request@gmd.de containing the word ‘subscribe’ in the body.

\texttt{abc2mtex}: support/abc2mtex
\texttt{M-Tx}: support/mtx
\texttt{midi2tex}: support/midi2tex
\texttt{musicitex}: macros/musicitex
\texttt{musicitex (Taupin’s version)}: macros/musixtex/taupin
\texttt{musicitex (Egler’s version)}: macros/musixtex/egler
\texttt{pmx}: support/pmx

106 Drawing Feynman diagrams in \LaTeX

Michael Levine’s \texttt{feynman} bundle for drawing the diagrams in \LaTeX\ 2.09 is still available.

Thorsten Ohl’s \texttt{feynmf} is designed to work with current \LaTeX, and works in combination with \texttt{METAFONT} (or MetaPost). The \texttt{feynmf} or \texttt{feynmp} package reads a description of the diagram written in \LaTeX, and writes out code. \texttt{METAFONT} (or MetaPost) can then produce a font (or PostScript file) for use in a subsequent \LaTeX\ run. For new users, who have access to MetaPost, the PostScript version is probably the better route, for document portability and other reasons.

Jos Vermaseren’s \texttt{axodraw} is mentioned as an alternative in the documentation of \texttt{feynmf}, but it is written entirely in terms of \texttt{dvips} \texttt{special} commands, and is thus rather imperfectly portable.

\texttt{axodraw}: graphics/axodraw/axodraw
\texttt{feynman bundle}: macros/latex209/contrib/feynman
\texttt{feynmf/feynmp bundle}: macros/latex/contrib/supported/feynmf

107 Better script fonts for maths

The font selected by \texttt{\mathcal} is the only script font ‘built in’. However, there are other useful calligraphic fonts included with modern \LaTeX\ distributions.

\textbf{Euler} The \texttt{eucal} package (part of most sensible \LaTeX\ distributions; the fonts are part of the AMS font set) gives a slightly curlier font than the default. The package changes the font that is selected by \texttt{\mathcal}.

Type 1 versions of the fonts are available in the AMS fonts distribution.

\textbf{RSFS} The \texttt{mathrsfs} package uses a really fancy script font (the name stands for “Ralph Smith’s Formal Script”) which is already part of most modern \LaTeX\ distributions. The package creates a new command \texttt{\mathscr}.

Type 1 versions of the font have been made available by Taco Hoekwater.

\textbf{Zapf Chancery} is the standard postscript calligraphic font. There is no package but you can easily make it available by means of the command

\begin{verbatim}
\DeclareMathAlphabet{\mathscr}{OT1}{pzc}{m}{it}
\end{verbatim}

in your preamble. You may find the font rather too big; if so, you can use a scaled version of it like this:

\begin{verbatim}
\DeclareFontFamily{OT1}{pzc}{}
\DeclareFontShape{OT1}{pzc}{m}{it}{}
\<-> s * [0.900] pzcmi7t{}{}
\DeclareMathAlphabet{\mathscr}{OT1}{pzc}{m}{it}
\end{verbatim}

Adobe Zapf Chancery (which the above examples use) is distributed in any but the most basic PostScript printers. A substantially identical font (to the the extent that the same metrics may be used) is available from URW and is distributed with \texttt{ghostscript}.
Examples of the available styles are available on CTAN.

eucal.sty: fonts/amsfonts/latex/eucal.sty
euler fonts: fonts/amsfonts/sources/euler

euler fonts, in Type 1 format: fonts/amsfonts/ps-type1

ghostscript: Browse nonfree/support/ghostscript

mathrsfs.sty: Distributed as part of macros/latex/contrib/supported/jknappen

rsfs fonts: fonts/rsfs

rsfs fonts, in Type 1 format: fonts/rsfs/ps-type1/hoekwater

Script font examples: info/symbols/math/scriptfonts.pdf

108 ‘Watermarks’ on every page

It’s often useful to place some text (such as ‘DRAFT’) in the background of every page of a document. For \LaTeX{} users, this can be achieved with the \texttt{draftcopy} package. This can deal with many types of DVI processors (in the same way that the graphics package does) and knows translations for the word ‘DRAFT’ into a wide range of languages (though you can choose your own word, too).

More elaborate watermarks may be achieved using the \texttt{eso-pic} package, which in turn uses the package \texttt{everyshi}, both part of Martin Schröder’s \texttt{ms} bundle.

draftcopy.sty: macros/latex/contrib/supported/draftcopy

eso-pic.sty and everyshi.sty: Distributed in macros/latex/contrib/supported/ms

109 Typesetting things in landscape orientation

It’s often necessary to typeset part of a document in landscape orientation; to achieve this, one needs not only to change the page dimensions, but also to instruct the output device to print the strange page differently.

There are two “ordinary” mechanisms for doing two slight variations of landscape typesetting:

- If you have a single floating object that is wider than it is deep, and will only fit on the page in landscape orientation, use the \texttt{rotating} package; this defines \texttt{sidewaysfigure} and \texttt{sidewaystable} environments which create floats that occupy a whole page.
- If you have a long sequence of things that need to be typeset in landscape (perhaps a code listing, a wide \texttt{tabbing} environment, or a huge table typeset using \texttt{longtable} or \texttt{supertabular}), use the \texttt{lscape} package. This defines an environment \texttt{landscape}, which clears the current page and restarts typesetting in landscape orientation (and clears the page at the end of the environment before returning to portrait orientation).

No currently available package makes direct provision for typesetting in both portrait and landscape orientation on the same page (it’s not the sort of thing that \LaTeX{} is well set-up to do). If such behaviour was an absolute necessity, one would use the techniques described in question 98, and would rotate the landscape portion using the rotation facilities of the \texttt{graphics} package. (Returning from landscape to portrait orientation would be somewhat easier: the portrait part of the page would be a bottom float at the end of the landscape section, with its content rotated.)

A word of warning: most current \LaTeX{} previewers do not honour rotation requests in .dvi files (the exceptions are the (commercial) Y\&Y previewer \texttt{dviwindo} (see question 51), and the fp\LaTeX{} previewer \texttt{WinDVI}). If your previewer is not capable of rotation, your best bet is to convert your output to PostScript or to PDF, and to view these ‘final’ forms with an appropriate viewer.

graphics.sty: Distributed as part of macros/latex/required/graphics

longtable.sty: Distributed as part of macros/latex/required/tools

lscape.sty: Distributed as part of macros/latex/required/graphics

rotating.sty: macros/latex/contrib/supported/rotating
Other “document font” sizes?
The \LaTeX\ standard classes have a concept of a (base) “document font” size; this size is
the basis on which other font sizes (those from \texttt{\tiny} to \texttt{\Huge}) are determined. The
classes are designed on the assumption that they won’t be used with sizes other than
the set that \LaTeX\ offers by default (10–12pt), but people regularly find they need other
sizes. The proper response to such a requirement is to produce a new design for the
document, but many people don’t fancy doing that.
Pragmatists, therefore, will tend to go for the classes in the extsizes bundle. This
bundle offers “extended” versions of the article, report, book and letter classes, at sizes
of 8, 9, 14, 17 and 20pt as well as the standard 10–12pt. Since little has been done
to these classes other than to adjust font sizes and things directly related to them, they
won’t be optimal — but they’re certainly practical.

Changing the format of the Table of Contents
The formats of entries in the table of contents (TOC) are controlled by a number of in-
ternal commands (discussed in section 2.4 of \textit{The \LaTeX\ Companion} — see question
19). The commands \texttt{\@pnumwidth}, \texttt{\@tocrmarg} and \texttt{\@dotsep} control the space for page
numbers, the indentation of the right-hand margin, and the seperation of the dots in the
dotted leaders, respectively. The series of commands named \texttt{\@x}, where \texttt{x} is the
name of a sectional heading (such as \texttt{chapter} or \texttt{section}, ...) control the layout of
the corresponding heading, including the space for section numbers. All these internal
commands may be individually redefined to give the effect that you want.
Alternatively, the package \texttt{tocloft} provides a set of user-level commands that may
be used to change the TOC formatting. Since exactly the same mechanisms are used
for the List of Figures and List of Tables, the layout of these sections may be controlled
in the same way.

Style of section headings
Suppose that the editor of your favourite journal has specified that section headings
must be centred, in small capitals, and subsection headings ragged right in italic, but
that you don’t want to get involved in the sort of programming described in \textit{The \LaTeX\ Companion}
(see question 19; the programming itself is discussed in question 157). The
following hack will probably satisfy your editor. Define yourself new commands
\begin{verbatim}
\newcommand{\ssection}[1]{\section[#1]{\centering\sc #1}}
\newcommand{\ssubsection}[1]{\subsection[#1]{\raggedright\it #1}}
\end{verbatim}
and then use \texttt{\section} and \texttt{\subsection} in place of \texttt{\section} and \texttt{\subsection}.
This isn’t perfect: section numbers remain in bold, and starred forms need a separate re-
definition. Also, this will not work if you are using the prototype NFSS with \LaTeX\ 2.09,
because the font-changing commands behave differently there.
The package \texttt{sectsty} provides an easy-to-use set of tools to do this job, while the
package \texttt{titlesec} permits more advanced usage as well. (\texttt{Titlesec} comes with a second
package, \texttt{titeloc}, which is used to adjust the format of table of contents entries.)
The headings of \texttt{\chapter} and \texttt{\part} commands are produced by a different
mechanism; \texttt{sectsty} deals with both, but \texttt{titlesec} deals only with \texttt{\chapter}. The
\texttt{fncychap} package provides a nice collection of customised chapter heading designs.
The \texttt{anonchap} package provides a simple means of typesetting chapter headings “like
section headings” (i.e., without the “Chapter” part of the heading); the \texttt{tocbibind}
package provides the same commands, in pursuit of another end.
113 Indent after section headings

LATEX implements a style that doesn’t indent the first paragraph after a section heading. There are coherent reasons for this, but not everyone likes it. The \texttt{indentfirst} package suppresses the mechanism, so that the first paragraph is indented.

\texttt{indentfirst.sty}: Distributed as part of \texttt{macros/latex/required/tools}

114 The style of captions

Changes to the style of captions may be made by redefining the commands that produce the caption. So, for example, \texttt{\fnum@figure} (which produces the float number for figure floats) may be redefined:

\begin{verbatim}
\renewcommand{\fnum@figure}{\textbf{Fig.\ `\thefigure}}
\end{verbatim}

which will cause the number to be typeset in bold face. (Note that the original definition used \texttt{\figurename} — see question 153.) More elaborate changes can be made by patching the \texttt{\caption} command, but since there are packages to do the job, such changes (which can get rather tricky) aren’t recommended for ordinary users.

The \texttt{float} package provides some control of the appearance of captions, though it’s principally designed for the creation of non-standard floats. The \texttt{caption2} and \texttt{ccaption} (note the double \texttt{"c"}) packages provide a range of different formatting options; \texttt{ccaption} is the more modern and comprehensive, and also provides ‘continuation’ captions and captions that can be placed outside of float environments.

\texttt{caption2.sty}: \texttt{macros/latex/contrib/supported/caption}; note that \texttt{caption2}'s documentation is incomplete, and the documentation of the older \texttt{caption} should be typeset as well as that of the newer package.

\texttt{ccaption.sty}: \texttt{macros/latex/contrib/supported/ccaption}

\texttt{float.sty}: \texttt{macros/latex/contrib/supported/float}

115 The style of document titles

Limited resources in the titlepage option/environment in the standard styles, inflexibility of \texttt{\maketitle}... non-standard things in the title (such as logo images, etc.)

The \texttt{titling} package provides a number of facilities that permit manipulation of the appearance of a \texttt{\maketitle} command, the \texttt{\thanks} commands within it, and so on. The package also defines a \texttt{titlingpage} environment, that offers something in between the standard classes’ \texttt{titlepage} option and the \texttt{titlepage} environment, and is itself somewhat configurable.

\texttt{titling.sty}: \texttt{macros/latex/contrib/supported/titling}

116 Multiple indexes

LATEX’s standard indexing capabilities (those provided by the \texttt{makeidx} package) only provide for one index in your document; even quite modest documents can be improved by indexes for separate topics.

The \texttt{multind} package provides simple and straightforward multiple indexing. You tag each \texttt{\makeindex}, \texttt{\index} and \texttt{\printindex} command with a file name, and indexing commands are written to (or read from) the name with the appropriate (.idx or .ind) extension appended. The \texttt{\printindex} command is modified from the LATEX standard so that it doesn’t create its own chapter or section heading; you therefore decide what names (or sectioning level, even) to use for the indexes, and \texttt{\indexname} (see question 153) is completely ignored.

The \texttt{index} package provides a comprehensive set of indexing facilities, including a \texttt{\newindex} command that allows the definition of new styles of index. \texttt{\newindex} takes a ‘tag’ (for use in indexing commands), replacements for the .idx and .ind file extensions, and a title for the index when it’s finally printed; it can also change the item
that’s being indexed against (for example, one might have an index of artists referenced by the figure number where their work is shown).

index.sty: Distributed as part of macros/latex/contrib/supported/camel
multind.sty: macros/latex209/contrib/misc/multind.sty

117 Zero paragraph indent

The conventional way of typesetting running text has no separation between paragraphs, and the first line of each paragraph in a block of text indented.

In contrast, one common convention for typewritten text was to have no indentation of paragraphs; such a style is often required for “brutalist” publications such as technical manuals, and in styles that hanker after typewritten manuscripts, such as officially-specified dissertation formats.

Anyone can see, after no more than a moment’s thought, that if the paragraph indent is zero, the paragraphs must be separated by blank space: otherwise it is sometimes going to be impossible to see the breaks between paragraphs.

The simple-minded approach to zero paragraph indentation is thus:
\setlength{\parindent}{0pt}
\setlength{\parskip}{\baselineskip}
and in the very simplest text, it’s a fine solution.

However, the non-zero \parskip interferes with lists and the like, and the result looks pretty awful. The \parskip package patches things up to look reasonable; it’s not perfect, but it deals with most problems.

The Netherlands Users’ Group’s set of classes includes an \texttt{article} equivalent (\texttt{artikel3}) and a \texttt{report} equivalent (\texttt{rapport3}) whose design incorporates zero paragraph indent and non-zero paragraph skip.

\textit{NTG classes}: macros/latex/contrib/supported/ntgclass
\texttt{parskip.sty}: macros/latex/contrib/other/misc/parskip.sty

118 Set specifications and Dirac brackets

One of the few glaring omissions from \TeX’s mathematical typesetting capabilities is a means of setting separators in the middle of mathematical expressions. \TeX provides primitives called \texttt{\left} and \texttt{\right}, which can be used to modify brackets (of whatever sort) around a mathematical expression, as in: \texttt{\left(<expression> \right)} — the size of the parentheses is matched to the vertical extent of the expression.

However, in all sorts of mathematical enterprises one may find oneself needing a \texttt{\middle} command, to be used in expressions like
\texttt{\left\{ x \in \mathbb{N} \middle| x \mbox{ even} \right\}}
to specify the set of even natural numbers. The \texttt{e-\TeX} system (see question 207) defines just such a command, but users of Knuth’s original need some support. Donald Arseneau’s \texttt{braket} package provides commands for set specifications (as above) and for Dirac brackets (and bras and kets). The package uses the \texttt{e-\TeX} built-in command if it finds itself running under \texttt{e-\TeX}.

\texttt{braket.sty}: macros/latex/contrib/other/misc/braket.sty

\textbf{Q How do I do X in TeX or \LaTeX?}

119 Proof environment

It is not possible to make a \texttt{proof} environment which automatically includes an ‘end-of-proof’ symbol. Some proofs end in displayed maths; others do not. If the input file contains \texttt{...\end{proof}} then \LaTeX finishes off the displayed maths and gets ready for a new line before it reads any instructions connected with ending the proof. But traditionally the end-of-proof sign goes in the display, not on a new line. So you just have to put it in by hand in every proof.
120 Symbols for the number sets

It is a good idea to have commands such as \texttt{\textbackslash R} for the real numbers and other standard number sets. Traditionally these were typeset in bold. Because mathematicians usually do not have access to bold chalk, they invented the special symbols that are now often used for \texttt{\textbackslash R}, \texttt{\textbackslash C}, etc. These symbols are known as “blackboard bold”. Before insisting on using them, consider whether going back to the old system of ordinary bold might not be acceptable (it is certainly simpler).

A set of blackboard bold capitals is available in the AMS fonts “msam” (e.g., “msam10” for 10pt) and “msbm”. The fonts have a large number of mathematical symbols to supplement the ones in the standard \TeX distribution.

Two files which load the fonts and define the symbols are provided, and both work with either \TeX or \LaTeX. Questions or suggestions regarding these fonts should be directed to tech-support@math.ams.org.

Another complete set of blackboard bold fonts, the bbold family, is available in METAfont (in \texttt{fonts/bbold}). This set has the interesting property of offering blackboard bold forms of lower-case letters, something rather rarely seen on actual blackboards.

The “lazy person’s” blackboard bold macros:
\begin{verbatim}
\newcommand{\r}{\{\textsf{R}\hspace*{-0.9ex}\ \\
\rule{0.15ex}{1.5ex}\hspace*{0.9ex}}}
\newcommand{\n}{\{\textsf{N}\hspace*{-1.0ex}\ \\
\rule{0.15ex}{1.3ex}\hspace*{1.0ex}}}
\newcommand{\q}{\{\textsf{Q}\hspace*{-1.1ex}\ \\
\rule{0.15ex}{1.5ex}\hspace*{1.1ex}}}
\newcommand{\c}{\{\textsf{C}\hspace*{-0.9ex}\ \\
\rule{0.15ex}{1.3ex}\hspace*{0.9ex}}}
\end{verbatim}

work well at normal size if the surrounding text is \texttt{cmr10}. However, they are not part of a proper maths font, and so do not work in sub- and superscripts. Moreover, the size and position of the vertical bar is affected by the font of the surrounding text.

\textit{AMS symbol fonts}: \texttt{fonts/amsfonts/sources/symbols}

121 Roman theorems

If you want to take advantage of the powerful \texttt{\newtheorem} command without the constraint that the contents of the theorem is in a sloped font (for example, to use it to create remarks, examples, proofs, ...) then you can use the \texttt{theorem} package. Alternatively, the following sets up an environment \texttt{remark} whose content is in roman.
\begin{verbatim}
\newtheorem{preremark}{Remark}
\newenvironment{remark}{\begin{preremark}\rm}{\end{preremark}}
\end{verbatim}

\texttt{theorem.sty}: Distributed as part of \texttt{macros/latex/required/tools}

122 Fancy enumeration lists

Suppose you want your top-level \texttt{enumerate}s to be labelled ‘I’, ‘II’, ..., then give these commands:
\begin{verbatim}
\renewcommand{\theenumi}{\Roman{enumi}}
\renewcommand{\labelenumi}{\theenumi/}
\end{verbatim}

The possible styles of numbering are given in Section 6.3 of Lamport’s book (see question 19). Both \texttt{\theenumi} and \texttt{\labelenumi} must be changed, since \texttt{\theenumi} is used in cross-references to the list.

For lower level \texttt{enumerate}s, replace \texttt{enumi} by \texttt{enumii}, \texttt{enumiii} or \texttt{enumiv}, according to the level. If your label is much larger than the default, you should also change \texttt{\leftmargini}, \texttt{\leftmarginii}, etc.

If you’re running \LaTeXe, the \texttt{enumerate.sty} package offers similar facilities. Using it, the example above would be achieved simply by starting the enumeration \begin{enumerate}[I/].

\texttt{enumerate.sty}: Distributed as part of \texttt{macros/latex/required/tools}
123 Unnumbered sections in the Table of Contents

The easiest way to get headings of funny ‘sections’ such as prefaces in the table of contents is to use the counter \texttt{secnumdepth} described in Appendix C of the \LaTeX\ manual. For example:

\begin{verbatim}
\setcounter{secnumdepth}{-1}
\chapter{Preface}
\end{verbatim}

Of course, you have to set \texttt{secnumdepth} back to its usual value (which is 2 in the standard styles) before you do any ‘section’ which you want to be numbered.

Similar settings are made automatically in the \LaTeX\ book class by the \texttt{frontmatter} and \texttt{backmatter} commands.

This is why it works: \texttt{\chapter} without the star does

1. put something in the .toc file;
2. if \texttt{secnumdepth} ≥ 0, increase the counter for the chapter and write it out.
3. write the chapter title.

Other sectioning commands are similar, but with other values used in the test.

The value of the counter \texttt{tocdepth} controls which headings will be finally printed in the table of contents. This normally has to be set in the preamble and is a constant for the document. The package \texttt{tocvsec2} package provides a convenient interface to allow you to change the \texttt{secnumdepth} and/or the \texttt{tocdepth} counter values at any point in the body of the document; this provides convenient independent controls over the sectional numbering and the table of contents.

The package \texttt{abstract} (see question 133) includes an option to add the \texttt{abstract} to the table of contents, while the package \texttt{tocbibind} has options to include the table of contents itself, the bibliography, index, etc., to the table of contents.

The package \texttt{abstract} includes \texttt{macros/latex/contrib/supported/abstract}\
\texttt{tocbibind} includes \texttt{macros/latex/contrib/supported/tocbibind}\
\texttt{tocvsec2} includes \texttt{macros/latex/contrib/supported/tocvsec2}

124 Footnotes in tables

The standard \LaTeX\ \texttt{\footnote} command doesn’t work in tables; the table traps the footnotes and they can’t escape to the bottom of the page.

If your table is floating, your best bet is (unfortunately) to put the table in a \texttt{minipage} environment and to put the notes underneath the table, or to use Donald Arseneau’s package \texttt{threeparttable}.

Otherwise, if your table is not floating (it’s just a ‘\texttt{tabular}’ in the middle of some text), there are several things you can do to fix the problem.

1. Use \texttt{\footnotemark} to position the little marker appropriately, and then put in \texttt{\footnotetext} commands to fill in the text once you’ve closed the \texttt{tabular} environment. This is described in Lamport’s book, but it gets messy if there’s more than one footnote.
2. Stick the table in a \texttt{minipage} anyway. This provides all the ugliness of footnotes in a minipage with no extra effort.
3. \texttt{Use threeparttable} anyway; the package is intended for floating tables, and the result might look odd if the table is not floating, but it will be reasonable.
4. \texttt{Use tabularx or longtable} from the \LaTeX\ tools distribution; they’re noticeably less efficient than the standard \texttt{tabular} environment, but they do allow footnotes.
5. Grab hold of \texttt{footnote}, and put your \texttt{tabular} environment inside a \texttt{savenotes} environment. Alternatively, say \texttt{\makesavenoteenv{tabular}} in the preamble of your document, and tables will all handle footnotes correctly.
6. Use \texttt{mdwtab} from the same bundle; it will handle footnotes properly, and has other facilities to increase the beauty of your tables. It may also cause other table-related packages (not the standard ‘tools’ ones, though) to become very unhappy and stop working.

\texttt{footnote.sty}: Distributed as part of \texttt{macros/latex/required/tools}
Footnotes in \LaTEX section headings

The `\footnote` command is fragile, so that simply placing the command in `\section`'s arguments isn't satisfactory. Using `\protect\footnote` isn't a good idea either: the arguments of a section command are used in the table of contents and (more dangerously) potentially also in page headings. Unfortunately, there’s no mechanism to suppress the footnote in the heading while allowing it in the table of contents, though having footnotes in the table of contents is probably unsatisfactory anyway.

To suppress the footnote in headings and table of contents:

- Take advantage of the fact that the mandatory argument doesn’t ‘move’ if the optional argument is present: `\section[{title}]{title\footnote{title ftnt}}`
- Use the `footmisc` package, with package option `stable`—this modifies footnotes so that they softly and silently vanish away if used in a moving argument.

Footnotes in captions

Footnotes in captions are especially tricky: they present problems of their own, on top of the problems one experiences with footnotes in section titles (see question 125) and with footnotes in tables (see question 124).

So as well as using the optional argument of `\caption` (or whatever) to avoid the footnote migrating to the List of ..., and putting the object whose caption bears the footnote in a minipage, one also has to deal with the tendency of the `\caption` command to produce the footnote’s text twice. For this last problem, there is no tidy solution this author is aware of. If you’re suffering the problem, a well-constructed `\caption` command in a minipage environment within a float, such as:

```
\begin{figure}
  \begin{minipage}{\textwidth}
    ...
    \caption[Caption for LOF]{Real caption\footnote{blah}}
  \end{minipage}
\end{figure}
```

can produce two copies of the footnote body “blah”. (In fact, the effect occurs with captions that are long enough to require two lines to be typeset, and so won’t appear with such a short caption.) The `ccaption` package’s documentation describes a really rather awful work-around.

Changing the margins in \LaTEX

Changing the size of the body of a \LaTEX document’s text is a surprisingly difficult task: the best advice to the beginner is “don’t do it”. There are interactions between fundamental \TeX constraints, constraints related to the design of \LaTEX, and good typesetting and design practice, that mean that any change must be very carefully considered, both to ensure that it “works” and to ensure that the result is pleasing to the eye.

Lamport’s warning in his section on ‘Customizing the Style’ needs to be taken seriously. One-inch margins on A4 paper are fine for 10- or 12-pitch typewriters, but not for 10pt (or even 11pt or 12pt) type because readers find such wide, dense, lines difficult to read: there should ideally be no more than 75 characters per line (though the constraints change for two-column text).
\LaTeX's controls allow you to change the distance from the edges of a page to the left and top edges of your typeset text, and the width and height of the text. Changing the last two requires more skill than you might expect: the height should bear a certain relationship to $\texttt{\textbackslash \baselineskip}$, and the width should be constrained as mentioned above.

The controls are expressed as a set of page parameters; they are somewhat complex, and it is easy to get their interrelationships wrong when redefining the page layout. The layout package defines a \texttt{\textbackslash \texttt{layout}} command which draws a diagram of your existing page layout, with the dimensions (but not their interrelationships) shown. This FAQ recommends that you use a package to establish consistent settings of the parameters: the interrelationships are taken care of in the established packages, without you needing to think about them.

The ‘ultimate’ tool for adjusting the dimensions and position of the printed material on the page is the geometry package: a very wide range of adjustments of the layout may be relatively straightforwardly programmed, and documentation in the .dtx file (see question 35) is good and comprehensive.

Somewhat simpler to use is the vmargin package, which has a canned set of paper sizes (a superset of that provided in \LaTeX\ 2\epsilon), provision for custom paper, margin adjustments and provision for two-sided printing.

If you’re still eager to “do it yourself”, start by familiarising yourself with \LaTeX’s page layout parameters. For example, see section C.5.3 of the \LaTeX\ manual (pp. 181–182), or corresponding sections in many of the other good \LaTeX\ manuals (see question 19). The parameters \texttt{\texttt{\textbackslash oddsidemargin}} and \texttt{\texttt{\textbackslash evensidemargin}} are so-called because it is conventionally taken that odd-numbered pages appear on the right-hand side of a two-page spread (‘recto’) and even-numbered pages on the left-hand side (‘verso’). Both parameters refer to the \texttt{left-hand} margin; the right-hand margin is specified by implication, from the size of \texttt{\textbackslash textwidth}. The origin in DVI coordinates is one inch from the top of the paper and one inch from the left side; positive horizontal measurements extend right across the page, and positive vertical measurements extend down the page. Thus, for margins closer to the left and top edges of the page than 1 inch, the corresponding parameters, i.e., \texttt{\textbackslash evensidemargin}, \texttt{\textbackslash oddsidemargin}, \texttt{\textbackslash topmargin}, can be set to negative values.

Another surprise is that you cannot change the width or height of the text within the document, simply by modifying the text size parameters. The simple rule is that the parameters should only be changed in the preamble of the document, i.e., before the \texttt{\begin{document}} statement. To adjust text width within a document we define an environment:

\begin{verbatim}
\newenvironment{changemargin}[2]{%
 \begin{list}{}{%
 \setlength{\topsep}{0pt}%
 \setlength{\leftmargin}{#1}%
 \setlength{\rightmargin}{#2}%
 \setlength{\listparindent}{\parindent}%
 \setlength{\itemindent}{\parindent}%
 \setlength{\parsep}{\parskip}%
 }%
 \item[]\end{list}}
\end{verbatim}

This environment takes two arguments, and will indent the left and right margins, respectively, by the parameters’ values. Negative values will cause the margins to be narrowed, so \texttt{\begin{changemargin}\{-1cm\}\{-1cm\}} narrows the left and right margins by 1cm.

The chngpage package provides ready-built commands to do the above; it includes provision for changing the shifts applied to your text according to whether you’re on an odd or an even page of a two-sided document. The package’s documentation (in the file itself) suggests a strategy for changing text dimensions between pages — as mentioned above, changing the text dimensions within the body of a page may lead to unpredictable results.

\texttt{chngpage.sty}: macros/latex/contrib/supported/misc/chngpage.sty

\texttt{geometry.sty}: macros/latex/contrib/supported/geometry

\texttt{layout.sty}: Distributed as part of macros/latex/required/tools
128 Changing the space between letters

A common technique in advertising copy (and other text whose actual content need not actually be read) is to alter the space between the letters (otherwise known as the tracking). As a general rule, this is a very bad idea: it detracts from legibility, which is contrary to the principles of typesetting (any respectable font you might be using should already have optimum tracking built into it).

The great type designer, Eric Gill, is (possibly apocryphally) credited with saying “he who would letterspace lower-case text, would steal sheep” (stealing sheep was, before Gill’s time, a capital offence in Britain). As the remark suggests, though, letterspacing of upper-case text is less awful a crime; the technique used also to be used for emphasis of text set in gothic (or similar) fonts.

Straightforward macros (usable, in principle, with any \TeX macro package) may be found in \texttt{letterspacing} (which is the name of the .\texttt{tex} file; it also appears as the \texttt{letterspace} package in some distributions).

A more comprehensive solution is to be found in the \texttt{soul} package (which is optimised for use with \LaTeX, but also works with Plain \TeX. Soul also permits hyphenation of lettered spaced text; Gill’s view of such an activity is not (even apocryphally) recorded. (Spacing-out forms part of the name of \texttt{soul}; the other half is described in question 174.)

\texttt{letterspacing.tex}: macros/generic/letterspacing.tex

\texttt{soul.sty}:
macros/latex/contrib/supported/soul

129 Conditional compilation

While \LaTeX (or any other \TeX-derived package) isn’t really like a compiler, people regularly want to do compiler-like things using it. A common requirement is conditional ‘compilation’, and several \LaTeX-specific means to this end are available.

If your requirement is for a document from which whole chapters (or the like) are missing, consider the \LaTeX \texttt{include/includeonly} system. If you \texttt{\include} your files (rather than \texttt{\input} them — see question 185), \LaTeX writes macro traces of what’s going on at the end of each chapter to the .\texttt{aux} file; by using \texttt{\includeonly}, you can give \LaTeX an exhaustive list of the files that are needed. Files that don’t get \texttt{\include}d are skipped entirely, but the document processing continues as if they were there, and page, footnote, and other numbers are not disturbed. Note that you can choose which sections you want included interactively, using the \texttt{askinclude} package.

If you want to select particular pages of your document, use Heiko Oberdiek’s \texttt{pagesel} or the \texttt{selectp} packages. You can do something similar with an existing PDF document (which you may have compiled using \texttt{pdflatex} in the first place), using the \texttt{pdfpages} package. The job is then done with a document looking like:

\begin{verbatim}
\documentclass{article}
\usepackage[final]{pdfpages}
\begin{document}
\includepdf[firstpage=30, % the start page
lastpage=40] % the end page
{your source pdf}
\end{document}
\end{verbatim}

If you want flexible facilities for including or excluding small portions of a file, consider the \texttt{comment}, \texttt{version} or \texttt{optional} packages.

\texttt{comment} allows you to declare areas of a document to be included or excluded; you make these declarations in the preamble of your file. Its exclusion method is pretty robust, and can cope with ill-formed bunches of text (e.g., with unbalanced braces or \texttt{\if} commands).

\texttt{version} offers similar facilities to \texttt{comment.sty}; it’s far “lighter weight”, but is less robust (and in particular, cannot deal with very large areas of text being included/excluded).

\texttt{optional} defines a command \texttt{\opt}; its first argument is an ‘inclusion flag’, and its second is text to be included or excluded. Text to be included or excluded must be
well-formed (nothing mismatched), and should not be too big — if a large body of text is needed, \texttt{input} should be used in the argument. The documentation (in the package file itself) tells you how to declare which sections are to be included: this can be done in the document preamble, but the documentation also suggests ways in which it can be done on the command line that invokes \LaTeX{}, or interactively.

Finally, \texttt{verbatim} (which should be available in any distribution) defines a comment environment, which enables the dedicated user of the source text editor to suppress bits of a \LaTeX{} source file.

\texttt{askinclude.sty}: \texttt{macros/latex/contrib/other/misc/askinclude.sty}
\texttt{comment.sty}: \texttt{macros/latex/contrib/other/comment}
\texttt{optional.sty}: \texttt{macros/latex/contrib/other/misc/optional.sty}
\texttt{pagesel.sty}: \texttt{macros/latex/contrib/supported/oberdiek}
\texttt{pdfpages.sty}: \texttt{macros/latex/contrib/supported/pdfpages}
\texttt{selectp.sty}: \texttt{macros/latex/contrib/other/misc/selectp.sty}
\texttt{verbatim.sty}: Distributed as part of \texttt{macros/latex/required/tools}
\texttt{version.sty}: \texttt{macros/latex/contrib/other/misc/version.sty}

130 Setting bold Greek letters in \LaTeX{}

The issue here is complicated by the fact that \texttt{\textbf{}} (the command for setting bold text in \TeX{} maths) affects a select few mathematical symbols (the uppercase Greek letters). However lower-case Greek letters behave differently from upper-case Greek letters (due to Knuth’s esoteric font encoding decisions). However, \texttt{\textbf{}} can’t be used even for upper-case Greek letters in the \texttt{\textit{AMS-\LaTeX{}}} \texttt{amsmath} package, which disables this font-switching and you must use one of the techniques outlined below.

The Plain \TeX{} solution does work, in a limited way:
\begin{verbatim}
{\boldmathθ}
\end{verbatim}

but \texttt{\boldmath} may not be used in maths mode, so this ‘solution’ requires arcana such as:
\begin{verbatim}
$... \mbox{\boldmath$\theta$} ...$
\end{verbatim}

which then causes problems in superscripts, etc.

These problems may be addressed by using a bold mathematics package.

- The \texttt{bm} package, which is part of the \LaTeX{} tools distribution, defines a command \texttt{\bm{}} which may be used anywhere in maths mode.
- The \texttt{amsbsy} package (which is part of \texttt{\textit{AMS-\LaTeX{}}} \texttt{amsmath}) defines a command \texttt{\boldsymbol{}} which (though slightly less comprehensive than \texttt{\bm{}}) covers almost all common cases.

All these solutions cover all mathematical symbols, not merely Greek letters.

\texttt{bm.sty}: Distributed as part of \texttt{macros/latex/required/tools}
\texttt{amsbsy.sty}: Distributed as part of the \texttt{\textit{AMS-\LaTeX{}}} \texttt{amsmath} package \texttt{macros/latex/required/amslatex}
\texttt{amsmath.sty}: Distributed as part of the \texttt{\textit{AMS-\LaTeX{}}} \texttt{amsmath} package \texttt{macros/latex/required/amslatex}

131 Defining a new log-like function in \LaTeX{}

Use the \texttt{\texttt{\textbackslash mathop}} command, as in:
\begin{verbatim}
\newcommand{\diag}{\mathop{\texttt{\textbackslash rm diag}}}
\end{verbatim}
Subscripts and superscripts on \texttt{\textbackslash diag} will be placed exactly as they are on \texttt{\textbackslash lim}.

If you want your subscripts and superscripts always placed to the right, do:
\begin{verbatim}
\newcommand{\diag}{\mathop{\texttt{\textbackslash rm diag}}\texttt{nolimits}}
\end{verbatim}

This works in \TeX{} 2.09 and in \TeX{} 2\epsilon, but not under NFSS alone (see question 175). However, the canonical method for doing this in \TeX{} 2\epsilon is to use the the \texttt{\texttt{\textbackslash DeclareMathOperator}} command of the \texttt{amsopn} package.

(It should be noted that “log-like” was reportedly a joke on Lamport’s part; it is of course clear what was meant.)
132 Typesetting all those \TeX-related logos

Knuth was making a particular point about the capabilities of \TeX when he defined the logo. Unfortunately, many believe, he thereby opened floodgates to give the world a whole range of rather silly ‘bumpy road’ logos such as AM\S-\TeX, \PCTeX, Bib\TeX, and so on, produced in a flurry of different fonts, sizes, and baselines — indeed, everything one might hope to cause them to obstruct the reading process. In particular, Lamport invented L\TeX (silly enough in itself) and marketing input from Addison-Wesley led to the even stranger current logo L\TeX\sups{2}\epsilon.

Sensible users don’t have to follow this stuff wherever it goes, but, for those who insist, a large collection of logos is defined in the texnames package (but note that this set of macros isn’t entirely reliable in L\TeX\sups{2}\epsilon). The META\FONT and MetaPost logos can be set in fonts that L\TeX\sups{2}\epsilon knows about (so that they scale with the surrounding text) using the mflogo package; but be aware that booby-traps surround the use of the Knuthian font for MetaPost (you might get META O T). You needn’t despair, however — the author himself uses just ‘MetaPost’.

For those who don’t wish to acquire the ‘proper’ logos, the canonical thing to do is to say AM\S-\TeX{} (AMS-\TeX) for AM\S-\TeX, Pic\TeX{} (Pic\TeX) for \PCTeX, Bib\TeX{} (Bib\TeX) for Bib\TeX, and so on.

While the author of this FAQ list can’t quite bring himself to do away with the bumpy-road logos herein, he regularly advises everyone else to...

133 1-column abstract in 2-column document

One often requires that the abstract of a paper should appear across the entire page, even in a two-column paper. The required trick is:

\documentclass[twocolumn]{article}...
\begin{document}...
% \author, etc
\twocolumn[
 \begin{twocolumnfalse}
 \maketitle
 \begin{abstract}
 ...
 \end{abstract}
 ...
 \end{twocolumnfalse}
]

Unfortunately, with the above \thanks won’t work in the \author list. If you need such specially-numbered footnotes, you can make them like this:

\title{Demonstration}
\author{Me, You\thanks{}}
\twocolumn[
 ... as above ...
]
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
 \footnotetext[1]{Thanks for nothing}

and so on.

As an alternative, among other facilities the abstract package (available from macros/latex/contrib/supported/abstract) provides a \saythanks command and a onecolabstract environment which remove the need to fiddle with the \thanks and footnoting. They can be used like this:
134 Code listings in \LaTeX

‘Pretty’ code listings are sometimes considered worthwhile by the neurotically aesthetic programmer, but they have a serious place in the typesetting of dissertations by computer science and other students who are expected to write programs. Simple verbatim listings are commonly useful, as well.

Verbatim listings are dealt with elsewhere (see question 100). ‘Pretty’ listings are generally provided by means of a pre-compiler, but the listings package manages to do the job within \LaTeX.

The lgrind system is a well-established pre-compiler, with all the facilities one might need and a wide repertoire of languages.

The tiny_c2l system is more recent: users are encouraged to generate their own driver files for languages it doesn’t already deal with.

The C++2LaTeX system comes with strong recommendations for use with C and C++.

\LaTeX{}\TeX{}: support/C++2LaTeX-1_1pl1
lgrind: support/lgrind
listings.sty: macros/latex/contrib/supported/listings
tiny_c2l: support/tiny_c2l

135 Typesetting the Principal Value Integral Symbol

This symbol (an integral sign, ‘crossed’) does not appear in any of the fonts ordinarily available to (\LaTeX)\TeX{} users, but it can be created by use of the following macros:

\begin{verbatim}
\def\Xint#1{% \mathchoice
 {\XXint\displaystyle\textstyle{#1}}%
 {\XXint\textstyle\scriptstyle{#1}}%
 {\XXint\scriptstyle\scriptscriptstyle{#1}}%
 {\XXint\scriptscriptstyle\scriptscriptstyle{#1}}%
 \!
\int}
\def\XXint#1#2#3{{\setbox0=\hbox{$#1#2$}\vcenter{\hbox{$#2#3$}}\kern-.5\wd0}}
\def\ddashint{\Xint=}
\def\dashint{\Xint-}
\end{verbatim}

\dashint gives a single-dashed integral sign, \ddashint a double-dashed one.

136 Using a new language with Babel

Babel is capable of working with a large range of languages, and a new user often wants to use a language that her \LaTeX{} installation is not set up to employ. Simply asking Babel to use the language, with the command

\usepackage[catalan]{babel}

provokes the warning message

\begin{verbatim}
Package babel Warning: No hyphenation patterns were loaded for (babel) the language ‘Catalan’ (babel) I will use the patterns loaded for \language=0 instead.
\end{verbatim}

(The last line of the above has been wrapped to fit on the page.)

The problem is that your \LaTeX{} system doesn’t know how to hyphenate Catalan text: you need to tell it how before Babel can do its work properly. To do this, for \LaTeX{}
installations, one needs to change language.dat (which is part of the Babel installation); it will contain a line

%catalan cahyphen.tex

which, if you remove the comment marker, is supposed to instruct \TeX to load Catalan hyphenation patterns when you tell it to build a new format.

Unfortunately, in many Babel distributions, the line just isn’t right — you need to check the name of the file containing the patterns you’re going to use. As you can see, in the author’s system, the name is supposed to be cahyphen.tex; however the file actually present on the system is cahyp.tex — fortunately, the error should prove little more than an inconvenience (most of the files are in better distributions anyway, but an elusive one may be found on CTAN; if you have to retrieve a new file, ensure that it’s correctly installed, for which see question 92).

Finally, you need to regenerate the formats used (in fact, most users of Babel are using it in their \TeX documents, so regenerating the \TeX-related formats will ordinarily be enough; however, the author always generates the lot, regardless).

\TeX, \fp\TeX

To regenerate all formats, do:

\texttt{fmtutil --all}

If you’re willing to think through what you’re doing (this is not for the faint-hearted), you can select a sequence of formats and for each one, run:

\texttt{fmtutil --byfmt \langle formatname \rangle}

where formatname is something like ‘latex’, or:

\texttt{fmtutil --byhyphen \langle hyphenfile \rangle}

where hyphenfile is the file specifying hyphenation to the format — usually language.dat

\MikTeX

On a \MikTeX distribution earlier than v2.0, do:

\texttt{Start→Programs→MikTeX→Maintenance→Create all format files}

or get a DOS window and run:

\texttt{initexmf --dump}

On a \MikTeX distribution v2.0 or later, the whole procedure can be done via the GUI. To select the new language, do:

\texttt{Start→Programs→MikTeX 2→MikTeX Options, and select the Languages tab. Select your language from the list, press the Apply button, and then the OK button. Then select the General tab and press the Update Row button. Otherwise, edit the language.dat file (as outlined above), and then run:}

\texttt{initexmf --dump}

just as for a pre-v2.0 system.

\textit{Caveat:} It is (just) possible that your \TeX system may run out of “pattern memory” while generating the new format. Most \TeX implementations have fixed-size arrays for storing the details of hyphenation patterns, but although their size is adjustable in most modern distributions, actually changing the size is a fiddle. If you do find you’ve run out of memory, it may be worth scanning the list of languages in your language.dat to see whether any could reasonably be removed.

\texttt{babel: macros/latex/required/babel}

\texttt{hyphenation patterns: language/hyphenation}

137 How to use the underscore character

The underscore character _ is ordinarily used in \TeX to indicate a subscript in maths mode; if you type _ in the course of ordinary text, \TeX will complain. If you’re writing a document which will contain a large number of underscore characters, the prospect of typing _ (or, worse, \textunderscore) for every one of them will daunt most ordinary people.

Moderately skilled macro programmers can readily generate a quick hack to permit typing _ to mean ‘text underscore’. However, the code is somewhat tricky, and more importantly there are significant points where it’s easy to get it wrong. There is therefore a package \texttt{underscore} which provides a general solution to this requirement.

\texttt{underscore.sty: macros/latex/contrib/other/misc/underscore.sty}
138 How to get rid of page numbers

The package \texttt{nopageno} will suppress page numbers in a whole document.

To suppress page numbers from a single page, use \texttt{\thispagestyle{empty}} somewhere within the text of the page. (Note that \texttt{\maketitle} and \texttt{\chapter} both use \texttt{\thispagestyle} internally, so you need to call it after you’ve called them.)

To suppress page numbers from a sequence of pages, you may use \texttt{\pagestyle{empty}} at the start of the sequence, and restore the original page style at the end. Unfortunately, you still have to use \texttt{\thispagestyle} after any \texttt{\maketitle} or \texttt{\chapter} command.

An alternative is to use the rather delightful \texttt{\pagenumbering{gobble}}; this has the simple effect that any attempt to print a page number produces nothing, so there’s no issue about preventing any part of \LaTeX{} from printing the number. However, the \texttt{\pagenumbering} command does have the side effect that it resets the page number (to 1), which may be undesirable.

\texttt{nopageno}: \texttt{macros/latex/contrib/supported/carlisle/nopageno.sty}

139 How to type an ‘@’ sign?

Long ago, some packages used to make the ‘@’ sign active, so that special measures were needed to type it. While those packages are still in principle available, few people use them, and those that do use them have ready access to rather good documentation.

Ordinary people (such as the author of this FAQ) need only type ‘@’.

140 How to create crop marks

If you’re printing something that’s eventually to be reproduced in significant quantities, and bound, it’s conventional to print on paper larger than your target product, and to place “crop marks” outside the printed area. These crop marks are available to the production house, for lining up reproduction and trimming machines.

You can save yourself the (considerable) trouble of programming these marks for yourself by using the package \texttt{crop}, which has facilities to satisfy any conceivable production house.

\texttt{crop.sty}: \texttt{macros/latex/contrib/supported/crop}

141 Putting things at fixed positions on the page

\LaTeX{}’s model of the world is (broadly speaking) that the author writes text, and \LaTeX{} and its macros decide how it all fits on the page. This is not good news for the author who has, from whatever source, a requirement that certain things go in exactly the right place on the page.

Fortunately, in the \LaTeX{} world at least, there is a fixed point on every page, to whit the page header. The package \texttt{textpos} latches bits of typesetting to locations you specify, by fixing them to the page header, and thereby solves the problem.

\texttt{textpos.sty}: \texttt{macros/latex/contrib/supported/textpos}

142 Wide figures in two-column documents

Floating figures and tables ordinarily come out the same width as the page, but in two-column documents they’re restricted to the width of the column. This is sometimes not good enough; so there are alternative versions of the float environments — in two-column documents, \texttt{figure*} provides a floating page-wide figure (and \texttt{table*} a page-wide table) which will do the necessary.

The \texttt{“*”}ed float environments can only appear at the top of a page, or on a whole page — \texttt{h} or \texttt{b} float placement directives are simply ignored.

Unfortunately, page-wide equations can only be accommodated inside float environments. You should include them in \texttt{figure} environments, or use the \texttt{float} or \texttt{ccaption} package to define a new float type.

\texttt{ccaption.sty}: \texttt{macros/latex/contrib/supported/ccaption}

\texttt{float.sty}: \texttt{macros/latex/contrib/supported/float}
143 How to create a \subsubsection

\LaTeX’s set of “sections” stops at the level of \subsection. This reflects a design decision by Lamport — for, after all, who can reasonably want a section with such huge strings of numbers in front of it?

In fact, \LaTeX standard classes \textit{do} define “sectioning” levels lower than \subsection, but they don’t format them like sections (they’re not numbered, and the text is run-in after the heading). These deeply inferior section commands are \paragraph and \subparagraph: you can (if you \textit{must}) arrange that these two commands produce numbered headings, so that you can use them as \subsubsection and lower.

Unfortunately, this requires you to work with the root definitions of the commands since neither of the packages sectsty and titlesec (see question 112) cover transforming a \paragraph’s typesetting so that it looks like that of a \section. The commands (\section all the way down to \subparagraph) are defined in terms of the internal \@startsection command, which takes 6 arguments. If you \textit{must} make this sort of change, you are well advised to read the \LaTeX sources (\texttt{ltsect.dtx} in the \LaTeX distribution) and the source of the standard packages (\texttt{classes.dtx}). The \LaTeX companion (see question 19) discusses use of \@startsection for this sort of thing.

\LaTeX source: \texttt{macros/latex/base}

\texttt{sectsty.sty}: \texttt{macros/latex/contrib/supported/sectsty}

\texttt{titlesec.sty}: \texttt{macros/latex/contrib/supported/titlesec}

144 What’s the name of this file

One might want this so as to automatically generate a page header or footer recording what file is being processed. It’s not easy…

\TeX retains what it considers the name of the \textit{job}, only, in the special macro \jobname; this is the name of the file first handed to \TeX, stripped of its directory name and of any extension (such as \texttt{.tex}). If no file was passed (i.e., you’re using \TeX interactively), \jobname has the value \texttt{texput} (the name that’s given to \texttt{.log} files in this case).

This is fine, for the case of a small document, held in a single file; most significant documents will be held in a bunch of files, and \TeX makes no attempt to keep track of files input to the \textit{job}. So the user has to keep track, himself — the only way is to patch the input commands and cause them to retain details of the file name. This is particularly difficult in the case of Plain \TeX, since the syntax of the \texttt{\input} command is so peculiar.

In the case of \LaTeX, the input commands have pretty regular syntax, and the simplest patching techniques (see question 156) can be used on them:

\begin{verbatim}
 \def\ThisFile{\jobname}
 \newcounter{FileStack}
 \let\OrigInput\input
 \renewcommand{\input}[1]{\{
 \stepcounter{FileStack}
 \expandafter\let
 \cname NameStack\theFileStack\endcname
 \ThisFile
 \def\ThisFile{#1}\%
 \OrigInput{#1}\%
 \expandafter\let\expandafter
 \ThisFile
 \cname NameStack\theFileStack\endcname
 \addtocounter{FileStack}{-1}\%
}
\end{verbatim}

(And similarly for \texttt{\include}.) The code assumes you always use \LaTeX syntax for \\texttt{\input}, i.e., always use braces around the argument.

The \texttt{FiNK} (“File Name Keeper”) package provides a regular means of keeping track of the current file name (with its extension), in a macro \texttt{\finkfile}. The bundle includes a \texttt{fink.el} that provides support under \texttt{emacs} with \texttt{AUCTeX}.

\texttt{fink.sty}: \texttt{macros/latex/contrib/supported/fink}
145 Stopping all hyphenation

It may seem an odd thing to want to do (after all, one of \TeX’s great advertised virtues is the quality of its hyphenation) but it’s sometimes necessary. The real problem is, that the quality of \TeX’s is by default largely dependent on the presence of hyphenation; if you want to abandon hyphenation, something has to give.

\TeX (slightly confusingly) offers four possible mechanisms for suppressing hyphenation (there were only two prior to the extensions that arrived with \TeX version 3).

First, one can set the hyphenation penalties \hyphenpenalty and \exhyphenpenalty to an ‘infinite’ value (that is to say, 10000). This means that all hyphenations will sufficiently penalise the line that would contain them, that the hyphenation won’t happen. The disadvantage of this method is that \TeX will re-evaluate any paragraph for which hyphenations might help, which will slow \TeX down.

Second, one can select a language for which no hyphenation patterns exist. Some distributions create a language nohyphenation, and the \texttt{hyphenat} package uses this technique for its \nohyphens command which sets its argument without any hyphenation.

Third, one can set \lefthyphenmin and/or \righthyphenmin to a sufficiently large value that no hyphenation could possibly succeed, since the minimum is larger than the the length of the longest word \TeX is willing to hyphenate (the appropriate value is 62).

Fourth, once can suppress hyphenation for all text using the current font by the command

\begin{verbatim}
\hyphenchar\font=-1
\end{verbatim}

This isn’t a particularly practical way for users to suppress hyphenation — the command has to be issued for every font the document uses — but it’s how \LaTeX itself suppresses hyphenation in \tt and other fixed-width fonts.

Which of the techniques you should use depends on what you actually want to do. If the text whose hyphenation is to be suppressed runs for less than a paragraph, your only choice is the no-hyphens language: the language value is preserved along with the text (in the same way that the current font is); the values for penalties and hyphen minima active at the end of a paragraph are used when hyphenation is calculated.

Contrariwise, if you are writing a multilanguage document using the \texttt{babel} package, you cannot suppress hyphenation throughout using either the no-hyphens language or the hyphen minima: all those values get changed at a \texttt{babel} language switch: use the penalties instead.

If you simply switch off hyphenation for a good bit of text, the output will have a jagged edge (with many lines seriously overfull), and your (\LaTeX run will bombard you with warnings about overfull and underfull lines. To avoid this you have two options. You may use \texttt{sloppy} (or its environment version \texttt{sloppypar}), and have \TeX stretch what would otherwise be underfull lines to fill the space offered, and wrap other lines, while prematurely wrapping overfull lines and stretching the remainder. Alternatively, you may set the text ragged right (see question 146), and at least get rid of the overfull lines; this technique is ‘traditional’ (in the sense that typists do it) and may be expected to appeal to the specifiers of eccentric document layouts (such as those for dissertations), but for once their sense conforms with typographic style. (Or at least, style constrained in this curious way.)

\texttt{hyphenat.sty}: \texttt{macros/latex/contrib/supported/hyphenat}

146 Setting text ragged right

The trick with typesetting ragged right is to be sure you’ve told the \TeX engine “make this paragraph ragged, but never too ragged”. The \LaTeX \texttt{\raggedright} command (and the corresponding \texttt{flushleft} environment) has a tendency to miss the “never” part, and will often create ridiculously short lines, for some minor benefit later in the paragraph. The Plain \TeX version of the command doesn’t suffer this failing, but is rather conservative: it is loath to create too large a gap at the end of the line, but in some circumstances (such as where hyphenation is suppressed see question 145) painfully large gaps may sometimes be required.

Martin Schröder’s \texttt{ragged2e} package offers the best of both worlds: it provides raggedness which is built on the Plain \TeX model, but which is easily configurable. It defines easily-remembered command (e.g., \texttt{\RaggedRight}) and environment (e.g.,
FlushLeft) names that are simply capitalised transformations of the \LaTeX kernel originals. The documentation discusses the issues and explains the significance of the various parameters of \texttt{ragged2e}'s operation.

\texttt{ragged2e.sty}: Distributed as part of \texttt{macros/latex/contrib/supported/ms}

147 \textbf{How to reduce list spacing}

Lamport's book (see question 19) lists various parameters for the layout of list (things like $\texttt{\topsep}$, $\texttt{\itemsep}$ and $\texttt{\parsep}$), but fails to mention that they're set automatically within the list itself. It works by each list executes a command $\texttt{@list(depth)}$ (the depth appearing as a lower-case roman numeral); what's more, $\texttt{@listi}$ is usually reset when the font size is changed. As a result, it's rather tricky for the user to control list spacing; of course, the real answer is to use a document class designed with more modest list spacing, but we all know such things are hard to come by.

There are packages that provide some control of list spacing, but they seldom address the separation from surrounding text (defined by $\texttt{\topsep}$). The \texttt{expdlist} package, among its many controls of the appearance of description lists, offers a compaction parameter (see the documentation); the \texttt{mdwlist} package offers a \texttt{\makecompactlist} command for users' own list definitions, and uses it to define compact lists \texttt{itemize*}, \texttt{enumerate*} and \texttt{description*}. In fact, you can write lists such as these commands define pretty straightforwardly — for example:

\begin{verbatim}
\newenvironment{itemize*}{\begin{itemize}{\setlength{\itemsep}{0pt}}}{\end{itemize}}
\end{verbatim}

However, both packages offer other facilities for list configuration: you should certainly not try the "do-it-yourself" approach if you need a package for some other list configuration purpose.

If you want to adjust $\texttt{\topsep}$, the most sensible approach (at present) is to define your list 'from first principles' using the $\texttt{\list} \langle \texttt{item stuff} \rangle \{ \texttt{list stuff} \}$; the $\langle \texttt{list stuff} \rangle$ is executed after the $\texttt{\@list(depth)}$, and can therefore be used to adjust all the parameters, including $\texttt{\topsep}$.

An alternative is to redefine $\texttt{\@list(depth)}$ (and the size-changing commands that alter $\texttt{\@listi}$), but this is not recommended unless you're building your own class or package, in which case one hopes you're capable of analysing the way in which the standard classes do things (as recommended in question 24).

\texttt{expdlist.sty}: \texttt{macros/latex/contrib/supported/expdlist}

\texttt{mdwlist.sty}: Distributed as part of \texttt{macros/latex/contrib/supported/mdwtools}

148 \textbf{All the files used by this document}

When you're sharing a document with someone else (perhaps as part of a co-development cycle) it's as well to arrange that both correspondents have the same set of auxiliary files, as well as the document in question. Your correspondent obviously needs the same set of files (if you use the \texttt{url} package, she has to have \texttt{url} too, for example). But suppose you have a bug-free version of the \texttt{shinynew} package but her copy is still the unstable original; until you both realise what is happening, such a situation can be very confusing.

The simplest solution is the \LaTeX \texttt{\listfiles} command. This places a list of the files used and their version numbers in the log file. If you extract that list and transmit it with your file, it can be used as a check-list in case that problems arise.

Note that \texttt{\listfiles} only registers things that are input by the "standard" \LaTeX mechanisms ($\texttt{\documentclass}, \texttt{\usepackage}, \texttt{\input}, \texttt{\include}, \texttt{\includegraphics}$ and so on). But if you use \TeX primitive syntax, as in

\begin{verbatim}
\input mymacros
\end{verbatim}

\texttt{mymacros.tex} won't be listed by \texttt{\listfiles}, since you've bypassed the mechanism that records its use.
The `snapshot` package helps the owner of a \LaTeX{} document obtain a list of the external dependencies of the document, in a form that can be embedded at the top of the document. The intended use of the package is the creation of archival copies of documents, but it has application in document exchange situations too.

The `bundledoc` system uses \lstfiles to produce an archive (e.g., .tar.gz or .zip) of the files needed by your document; it comes with configuration files for use with \TeX{} and \miktex. It’s plainly useful when you’re sending the first copy of a document.

bundledoc: support/bundledoc
snapshot.sty: macros/latex/contrib/supported/snapshot

149 Marking changed parts of your document

One often needs clear indications of how a document has changed, but the commonest technique, “change bars”, requires surprisingly much trickery of the programmer (the problem being that \TeX{} ‘proper’ doesn’t provide the programmer with any information about the “current position” from which a putative start- or end-point of a bar might be calculated; PDF\TeX{} \emph{does} provide the information, but we’re not aware yet of any programmer taking advantage of the fact to write a PDF\TeX{}-based changebar package).

The simplest package that offers change bars is Peter Schmitt’s `backgrnd.tex`; this was written as a Plain \TeX{} application that patches the output routine, but it appears to work at least on simple \LaTeX{} documents. Wise \LaTeX{} users will be alerted by the information that \emph{backgrnd} patches their output routine, and will watch its behaviour very carefully (patching the \LaTeX{} output routine is not something to undertake lightly . .).

The longest-established solution is the `changebar` package, which uses `\special` commands supplied by the driver you’re using. You need therefore to tell the package which driver to generate `\special` s for (in the same way that you need to tell the `graphics` package); the list of available drivers is pretty restricted, but does include `dvips`. The package comes with a shell script `chbar.sh` (for use on Unix machines) that will compare two documents and generate a third which is marked-up with `changebar` macros to highlight changes.

The `vertbars` package uses the techniques of the `lineno` package (which must be present); it’s thus the smallest of the packages for change bar marking, since it leaves all the trickery to another package.

backgrnd.tex: macros/generic/backgrnd.tex
changebar.sty: macros/latex/contrib/supported/changebar
lineno.sty: macros/latex/contrib/supported/lineno
vertbars.sty: macros/latex/contrib/supported/misc/vertbars.sty

150 Fixed-width tables

There are two basic techniques for making fixed-width tables in \LaTeX{}: you can make the gaps between the columns stretch, or you can stretch particular cells in the table.

Basic \LaTeX{} can make the gaps stretch: the `\tabular*` environment takes an extra argument (before the `\clpr` layout one) which takes a length specification: you can say things like “15cm” or “\columnwidth” here. You must also have an `\extracolsep` command in the `\clpr` layout argument, inside an `@{}` directive. So, for example, one might have

\begin{tabular*}{\textwidth}{@{\extracolsep{\fill}}lllr}\end{tabular*}

The `tabularx` package defines an extra `\clpr` directive, \textit{X}; \textit{X} columns behave as `p` columns which expand to fill the space available. If there’s more than one \textit{X} column in a table, the spare space is distributed between them.

The `ltxtable` combines the features of the `longtable` and `tabularx` packages: it’s important to read the documentation, since usage is distinctly odd.

ltxtable.sty: Distributed with macros/latex/required/tools
151 Bits of document from other directories

A common way of constructing a large document is to break it into a set of files (for example, one per chapter) and to keep everything related to each of these subsidiary files in a subdirectory.

Unfortunately, \TeX doesn’t have a changeable “current directory”, so that all files you refer to have to be specified relative to the same directory as the main file. Most people find this counter-intuitive.

It may be appropriate to use the “path extension” technique of question 94 to deal with this problem. However, if there are several files with the same name in your document, such as chapter1/fig1.eps and chapter2/fig1.eps, you’re not giving \TeX any hint as to which you’re referring to when in the main chapter file you say \input{sect1}; while this is readily soluble in the case of human-prepared files (just don’t name them all the same), automatically produced files have a way of having repetitious names, and changing them is a procedure prone to error.

The import package comes to your help here: it defines an \import command that accepts a full path name and the name of a file in that directory, and arranges things to “work properly”. So, for example, if /home/friend/results.tex contains

\begin{verbatim}
\import{/home/friend/}{results}
\end{verbatim}

then \import{/home/friend/}{results} will include both graph and explanation as one might hope. A \subimport command does the same sort of thing for a subdirectory (a relative path rather than an absolute one), and there are corresponding \includefrom and \subincludefrom commands.

import.sty: macros/latex/contrib/supported/misc/import.sty

R Macro programming

152 Finding the width of a letter, word, or phrase

Put the word in a box, and measure the width of the box. For example,

\begin{verbatim}
\newdimen\stringwidth
\setbox0=\hbox{hi}
\stringwidth=\wd0
\end{verbatim}

Note that if the quantity in the \hbox is a phrase, the actual measurement only approximates the width that the phrase will occupy in running text, since the inter-word glue can be adjusted in paragraph mode.

The same sort of thing is expressed in \LaTeX by:

\begin{verbatim}
\newlength{\gnat}
\settowidth{\gnat}{\textbf{small}}
\end{verbatim}

This sets the value of the length command \gnat to the width of “small” in bold-face text.

153 How to change \LaTeX’s “fixed names”

\LaTeX document classes define several typographic operations that need ‘canned text’ (text not supplied by the user). In the earliest days of \LaTeX 2.09 these bits of text were built in to the body of \LaTeX’s macros and were rather difficult to change, but “fixed name” macros were introduced for the benefit of those wishing to use \LaTeX in languages other than English. For example, the special section produced by the \tableofcontents command is always called \contentsname (or rather, what \contentsname is defined to mean). Changing the canned text is now one of the easiest customisations a user can do to \LaTeX.

The canned text macros are all of the form \langle thing\rangle name, and changing them is simplicity itself, Put:

\begin{verbatim}
\renewcommand{\langle thing\rangle name}{Res minor}
\end{verbatim}

in the preamble of your document, and the job is done. (However, beware of the babel package, which requires you to use a different mechanism: be sure to check question 154 if you’re using it.)
The names that are defined in the standard \LaTeX classes (and the makeidx package) are listed below. Some of the names are only defined in a subset of the classes (and the letter class has a set of names all of its own); the list shows the specialisation of each name, where appropriate.

\abstractname \hspace{1em} Abstract
\alsoname \hspace{1em} see also (makeidx package)
\appendixname \hspace{1em} Appendix
\bibname \hspace{1em} Bibliography (report, book)
\ccname \hspace{1em} cc (letter)
\chaptername \hspace{1em} Chapter (report, book)
\contentsname \hspace{1em} Contents
\enclname \hspace{1em} encl (letter)
\figurename \hspace{1em} Figure (for captions)
\headtoname \hspace{1em} To (letter)
\indexname \hspace{1em} Index
\listfigurename \hspace{1em} List of Figures
\listtablename \hspace{1em} List of Tables
\pagename \hspace{1em} Page (letter)
\partname \hspace{1em} Part
\refname \hspace{1em} References (article)
\seename \hspace{1em} see (makeidx package)
\tablename \hspace{1em} Table (for captions)

154 Changing the words babel uses
\LaTeX uses symbolic names for many of the automatically-generated text it produces (special-purpose section headers, captions, etc.). As noted in question 153 (which includes a list of the names themselves), this enables the user to change the names used by the standard classes, which is particularly useful if the document is being prepared in some language other than \LaTeX's default English. So, for example, a Danish author may wish that her table of contents was called “Indholdsfortegnelse”, and so would expect to place a command

\renewcommand{\contentsname}{Indholdsfortegnelse}

in the preamble of her document.

However, it’s natural for a user of a non-English language to use babel, because it offers many conveniences and typesetting niceties for those preparing documents in those languages. In particular, when babel is selecting a new language, it ensures that \LaTeX’s symbolic names are translated appropriately for the language in question. Unfortunately, babel’s choice of names isn’t always to everyone’s choice, and there is still a need for a mechanism to replace the ‘standard’ names.

Whenever a new language is selected, babel resets all the names to the settings for that language. In particular, babel selects the document’s main language when \begin{document} is executed, which immediately destroys any changes to these symbolic names made in the prologue of a document that uses babel.

Therefore, babel defines a command to enable users to change the definitions of the symbolic names, on a per-language basis: \addto\captions{language} is the thing (\texttt{language} being the language option you gave to babel in the first place). For example:

\addto\captions{danish}{%
\renewcommand{\contentsname}{Indholdsfortegnelse}%
}

155 Running equation, figure and table numbering

Many \LaTeX classes (including the standard book class) number things per chapter; so figures in chapter 1 are numbered 1.1, 1.2, and so on. Sometimes this is not appropriate for the user’s needs.
Short of rewriting the whole class, one may use one of the `removefr` and `remreset` packages; both define a `\@removefromreset` command, and having included the package one writes something like:

\makeatletter
\@removefromreset{figure}{chapter}
and the automatic renumbering stops. You then need to redefine the way in which the figure number (in this case) is printed:

\renewcommand{\thefigure}{\@arabic\c@figure}
\makeatother
(remember to do the whole job, for every counter you want to manipulate, within \makeatletter ... \makeatother).

The technique may also be used to change where in a multilevel structure a counter is reset. Suppose your class numbers figures as \langle chapter \rangle.\langle section \rangle.\langle figure \rangle, and you want figures numbered per chapter, try:

\@removefromreset{figure}{section}
\@addtoreset{figure}{chapter}
\renewcommand{\thefigure}{\thechapter.\@arabic\c@figure}
(the command \@addtoreset is a part of \LaTeX{} itself).

The `chngcntr` package provides a simple means to access the two sorts of changes discussed, defining `\counterwithin` and `\counterwithout` commands.

chngcntr.sty: macros/latex/contrib/supported/misc/chngcntr.sty
removefr.tex: macros/latex/contrib/other/fragments/removefr.tex (note, this is constructed as a “fragment” for use within other packages: load by \input {removefr})
remreset.sty: Distributed with macros/latex/contrib/supported/carlisle

156 Patching existing commands

In the general case (possibly sticking something in the middle of an existing command) this is difficult. However, the common requirement, to add some code at the beginning or the end of an existing command, is conceptually quite easy. Suppose we want to define a version of a command that does some small extension of its original definition: we would naturally write:

\renewcommand{\splat}{\mumble\splat}

However, this would not work: a call to \splat would execute \mumble, and the call the redefined \splat again; this is an infinite recursive loop, that will quickly exhaust \TeX{}’s memory.

Fortunately, the \TeX{} primitive \let command comes to our rescue; it allows us to take a “snapshot” of the current state of a command, which we can then use in the redefinition of the command. So:

\let\OldSmooth\smooth
\renewcommand{\smooth}{\mumble\OldSmooth}

effects the required patch, safely. Adding things at the end of a command works similarly. If \smooth takes arguments, one must pass them on:

\renewcommand{\smooth}[2]{\mumble{\OldSmooth[#1]{#2}}}

The general case may be achieved in two ways. First, one can use the \LaTeX{} command `\CheckCommand`; this compares an existing command with the definition you give it, and issues a warning if two don’t match. Use is therefore:

\CheckCommand{\complex}{⟨original definition⟩}
\renewcommand{\complex}{⟨new definition⟩}

This technique is obviously somewhat laborious, but if the original command comes from a source that’s liable to change under the control of someone else, it does at least warn you that your patch is in danger of going wrong.

Otherwise, you may use one of the `patch` or `patchcmd` systems.

`Patch` gives you an ingenious (and difficult to understand) mechanism, and comes as an old-style \LaTeX{} documented macro file. Sadly the old-style doc macros are no longer available, but the file (patch.tex) may be input directly, and the documentation may be read (un-typeset). Roughly speaking, one gives the command a set of instructions
analagous to *sed* substitutions, and it regenerates the command thus amended. The
author of this FAQ has (slightly reluctantly) given up using *patch*...

The *patchcmd* package addresses a slightly simpler task, by restricting the set
of commands that you may patch; you mayn’t patch any command that has an
optional argument, though it does deal with the case of commands defined with
\DeclareRobustCommand. The package defines a \patchcommand command, that
takes three arguments: the command to patch, stuff to stick at the front of its de-
finiteion, and stuff to stick on the end of its definition. So, if \texttt{b} contains “b”, then
\patchcommand\texttt{b}{a}{c} will produce a new version of \texttt{b} that contains “abc”.

patch.doc: macros/generic/patch.doc

patchcommand.sty: macros/latex/contrib/supported/patchcmd

157 \@ and \@ in macro names

Macro names containing @ are internal to \LaTeX, and without special treatment just
don’t work in ordinary use. An exemplar of the problems caused is discussed in question
204.

The problems users see are caused by copying bits of a class (.cls file) or package
(.sty file) into a document, or by including a class or package file into a \LaTeX

document by some means other than \documentclass or \usepackage. \LaTeX defines
internal commands whose names contain the character @ to avoid clashes between its
internal names and names that we would normally use in our documents. In order that
these commands may work at all, \documentclass and \usepackage play around
with the meaning of @.

If you’ve included a file wrongly, you solve the problem by using the correct com-
mand.

If you’re using a fragment of a package or class, you may well feel confused: books
such as *The \LaTeX Companion* (see question 19) are full of fragments of packages as
examples for you to employ.

For example, there’s a lengthy section in *The Companion* about \@startsection and
how to use it to control the appearance of section titles. Page 15 discusses the
problem; and suggests that you make such changes in the document preamble, between
\makeatletter and \makeatother. So the redefinition of \subsection on page 26
could be:

\makeatletter
\renewcommand{\subsection}{\@startsection
{subsection}{% name
...}{\normalfont\normalsize\itshape}% style
\makeatother

The alternative is to treat all these fragments as a package proper, bundling them up
into a .sty file and including them with \usepackage. (This approach is marginally
preferable, from the \LaTeX purist’s point of view.)

158 What’s the reason for ‘protection’?

Sometimes \LaTeX saves data it will reread later. These data are often the argument of
some command; they are the so-called moving arguments. (‘Moving’ because data are
moved around.) Places to look for are all arguments that may go into table of contents,
list of figures, etc.; namely, data that are written to an auxiliary file and read in later.
Other places are those data that might appear in head- or footlines. Section headers and
figure captions are the most prominent examples; there’s a complete list in Lamport’s
book (see question 19).

What’s going on really, behind the scenes? The commands in the moving arg-
ument arguments are already expanded to their internal structure during the process of sav-
ing. Sometimes this expansion results in invalid \TeX code when processed again.
\texttt{\protect\cmd} tells \LaTeX to save \cmd as \cmd, without expansion.
What is a ‘fragile command’? It’s a command that expands into illegal \TeX code
during the save process.
What is a ‘robust command’? It’s a command that expands into legal \TeX code during the save process.

No-one (of course) likes this situation; the \TeX{}3 team have removed the need for protection of some things in the production of \TeX{}2ε, but the techniques available to them within current \TeX{} mean that this is an expensive exercise. It remains a long-term aim of the team to remove all need for these things.

159 \edef does not work with \protect

Robust \TeX{} commands are either “naturally robust” — meaning that they never need \protect{}, or “self-protected” — meaning that they have \protect{} built in to their definition in some way. Self-protected commands are robust only in a context where the \protect{} mechanism is properly handled. The body of an \edef definition doesn’t handle \protect{} properly, since \edef is a \TeX{} primitive rather than a \TeX{} command.

This problem is resolved by a \TeX{} internal command \protect@edef, which does the job of \edef while keeping the \protect{} mechanism working. There’s a corresponding \protect@xdef which does the job of \xdef.

Of course, these commands need to be tended carefully, since they’re internal: see question 157.

160 Optional arguments like \section

Optional arguments, in macros defined using \newcommand, don’t quite work like the optional argument to \section. The default value of \section’s optional argument is the value of the mandatory argument, but \newcommand requires that you ‘know’ the value of the default beforehand.

The requisite trick is to use a macro in the optional argument:
\begin{verbatim}
\newcommand\thing[2][\DefaultOpt]{\def\DefaultOpt{#2} ...}
\end{verbatim}

161 Making labels from a counter

Suppose we have a \TeX{} counter, which we’ve defined with \newcounter{foo}. We can increment the value of the counter by \addtocounter{foo}{1}, but that’s pretty clunky for an operation that happens so often... so there’s a command \stepcounter{foo} that does this special case of increasing-by-one.

There’s an internal \TeX{} variable, the “current label”, that remembers the last ‘labellable’ thing that \TeX{} has processed. You could (if you were to insist) set that value by the relevant \TeX{} command (having taken the necessary precautions to ensure that the internal command worked) — but it’s not necessary. If, instead of either of the stepping methods above, you say \refstepcounter{foo}, the internal variable is set to the new value, and (until something else comes along), \label will refer to the counter.

162 Finding if you’re on an odd or an even page

Question 191 discusses the issue of getting \marginpar commands to put their output in the correct margin of two-sided documents. This is an example of the general problem of knowing where a particular bit of text lies: the output routine is asynchronous, and \TeX{} will usually process quite a bit of the “next” page before deciding to output any page. As a result, the page counter (known internally in \TeX{} as \c@page) is normally only reliable when you’re actually in the output routine.

The solution is to use some version of the \label mechanism to determine which side of the page you’re on; the value of the page counter that appears in a \pageref command has been inserted in the course of the output routine, and is therefore safe.

However, \pageref itself isn’t reliable: one might hope that
\begin{verbatim}
\ifthenelse{\isodd{\pageref{foo}}}{odd}{even}
\end{verbatim}
would do the necessary, but both the babel and hyperref packages have been known to interfere with the output of \pageref; be careful!

The chngpage package needs to provide this functionality for its own use, and therefore provides a command \checkoddpage; this sets a private-use label, and the
page reference part of that label is then examined (in a \texttt{hyperref}-safe way) to set a conditional \texttt{\ifcpoddpage} true if the command was issued on an odd page. Of course, the \texttt{\label} contributes to \LaTeX{}'s “Rerun to get cross-references right” error messages...

\texttt{chngpage.sty: macros/latex/contrib/supported/misc/chngpage.sty}

\section{How to change the format of labels}

By default, when a label is created, it takes on the appearance of the counter labelled: specifically, it is set to \texttt{\the<counter>} — what would be used if you asked to typeset the counter in your text. This isn’t always what you need: for example, if you have nested enumerated lists with the outer numbered and the inner labelled with letters, one might expect to want to refer to items in the inner list as “2(c)”. (Remember, you can change the structure of list items — see question \ref{question:122}) The change is of course possible by explicit labelling of the parent and using that label to construct the typeset result — something like

\begin{verbatim}
\ref{parent-item}\ref{child-item}
\end{verbatim}

which would be both tedious and error-prone. What’s more, it would be undesirable, since you would be constructing a visual representation which is inflexible (you couldn’t change all the references to elements of a list at one fell swoop).

\LaTeX{} in fact has a label-formatting command built into every label definition; by default it’s null, but it’s available for the user to program. For any label \texttt{⟨counter⟩} there’s a \LaTeX{} internal command \texttt{\p@⟨counter⟩}; for example, a label definition on an inner list item is done (in effect) using the command \texttt{\p@enumii{\theenumii}}. So to change the labels on all inner lists, put the following patch in your preamble:

\begin{verbatim}
\makeatletter
\newcommand{\p@enumii}[1]{\theenumi(#1)}
\makeatother
\end{verbatim}

The analogous change works for any counter that gets used in a \texttt{\label} command.

\section{Typesetting particular types of documents}

\subsection{Setting papers for journals}

Publishers of journals have a wide range of requirements for the presentation of papers, and while many publishers do accept electronic submissions in \LaTeX{}, they don’t often submit recommended macros to public archives.

Nevertheless, there are considerable numbers of macros of one sort or another available on CTAN; searching for your journal name in the CTAN catalogue (see question \ref{question:46}) may well turn up what you’re seeking.

Failing that, you may be well advised to contact the prospective publisher of your paper; many publishers have macros on their own web sites, or otherwise available only upon application.

Check that the publisher is offering you macros suitable to an environment you can use: a few still have no macros for current \LaTeX{}, for example, claiming that \LaTeX{} 2.09 is good enough...

Some publishers rekey anything sent them anyway, so that it doesn’t really matter what macros you use. Others merely encourage you to use as few extensions of a standard package as possible, so that they will find it easy to transform your paper to their own internal form.

\subsection{A ‘report’ from lots of ‘article’s}

This is a requirement, for example, if one is preparing the proceedings of a conference whose papers were submitted in \LaTeX{}.

The nearest thing to a canned solution is Peter Wilson’s \texttt{combine} class; it defines the means to ‘\texttt{\import}’ entire documents, and provides means of specifying significant features of the layout of the document, as well as a global table of contents, and so on. An auxiliary package, \texttt{combinet}, allows use of the \texttt{\titles} and \texttt{\authors} (etc.) of the \texttt{\imported} documents to appear in the global table of contents.
A more ‘raw’ toolkit is offered by Matt Swift’s includex and moredefs packages, both part of the frankenstein bundle) offer a possible way forward.

Includex enables you to ‘\includedoc’ complete articles (in the way that you ‘\include’ chapter files in an ordinary report). It doesn’t do the whole job for you, though. You need to analyse the package use of the individual papers, and ensure that a consistent set is loaded in the preamble of the main report.

A completely different approach is to use the pdfpages package, and to include articles submitted in PDF format into a a PDF document produced by PDFLaTeX. The package defines an ‘\includepdf’ command, which takes arguments similar to those of the ‘\includegraphics’ command. With keywords in the optional argument of the command, you can specify which pages you want to be included from the file named, and various details of the layout of the included pages.

combine.cls: macros/latex/contrib/supported/combine
combinet.sty: macros/latex/contrib/supported/combine
includex.sty: Distributed in the “unsupported” part of macros/latex/contrib/supported/frankenstein
moredefs.sty: Distributed as part of macros/latex/contrib/supported/frankenstein
pdfpages.sty: macros/latex/contrib/supported/pdfpages

166 Curriculum Vitae (Resumé)

A framework class, vita, for Curricula Vitae is provided by Andrej Brodnik.

The class can be customised both for subject (example class option files are offered for both computer scientists and singers), and for language (both the options provided are available for both English and Slovene). Extensions may be written by creating new class option files, or by using macros defined in the class to define new entry types, etc.

Didier Verna’s class, curve, is based on a model in which the CV is made of a set of rubrics (each one dealing with a major item that you want to discuss, such as ‘education’, ‘work experience’, etc. The class’s documentation is supported by a couple of example files, and an emacs mode is provided.

curve.cls: macros/latex/contrib/supported/curve
vita.cls: macros/latex/contrib/other/vita

167 My words aren’t being hyphenated

Let’s assume you’ve selected the right TeX ‘language’ — as explained in question 37, you’re not likely to get the correct results typesetting one language using the hyphenation rules of another. (Select the proper language, using babel if you’re a LaTeX user. This may reveal that you need another set of hyphenation patterns; see question 136 for advice on how to install it.

So what else can go wrong?

• Since \TeX version 3.0, the limits on how near to either end of a word hyphenation may take place have been programmable (see question 168), and for some reason the values in question may have been corrupted in some macros you are using. \TeX won’t hyphenate less than \lefthyphenmin characters after the start of a word, nor less than \righthyphenmin before the end of a word; thus it won’t hyphenate a word shorter than the sum of the two minima, at all. For example, since the minima are 2 and 3 for English, \TeX won’t hyphenate a word shorter than 5 letters long, if it believes the word to be English.

• \TeX won’t hyphenate a word that’s already been hyphenated. For example, the (caricature) English surname Smyth-Postlethwaite wouldn’t hyphenate, which could be troublesome. This is correct English typesetting style (it may not be correct for other languages), but if needs must, you can replace the hyphen in the name with a \hyph command, defined

```
\def\hyph{\penalty0\hskip0pt\relax}
```

82
This is not the sort of thing this FAQ would ordinarily recommend... The hyphenat package defines a bundle of such commands (for introducing hyphenation points at various punctuation characters).

- There may be accents in the word. The causes of and remedies for this effect are discussed in question 170.
- The hyphenation may simply not have been spotted; while \TeX{}'s algorithm is good, it’s not infallible, and it does miss perfectly good hyphenations in some languages. When this happens, you need to give \TeX{} explicit instructions on how to hyphenate.

The \texttt{\hyphenation} command allows you to give explicit instructions. Provided that the word will hyphenate at all (that is, it is not prevented from hyphenating by any of the other restrictions above), the command will override anything the hyphenation patterns might dictate. The command takes one or more hyphenated words as argument — \texttt{\hyphenation{ana-lysis pot-able}}; note that (as here, for analysis) you can use the command to overrule \TeX{}'s choice of hyphenation (ana-lysis is the British etymological hyphenation; some feel the American hyphenation feels ‘unfortunate’...).

\texttt{hyphenat.sty}: macros/latex/contrib/supported/hyphenat

168 \textbf{Weird hyphenation of words}

If your words are being h-yphenated, like this, with just single letters at the beginning or the end of the word, you may have a version mismatch problem. \TeX{}'s hyphenation system changed between version 2.9 and 3.0, and macros written for use with version 2.9 can have this effect with a version 3.0 system. If you are using Plain \TeX{}, make sure your \texttt{plain.tex} file has a version number which is at least 3.0, and rebuild your format. If you are using \TeX{} 2.09 your best plan is to upgrade to \TeX{} 2.\alpha. If for some reason you can’t, the last version of \TeX{} 2.09 (released on 25 March 1992) is still available (for the time being at least) and ought to solve this problem.

If you’re using \TeX{} 2.\alpha, the problem probably arises from your \texttt{hyphen.cfg} file, which has to be created if you’re using a multi-lingual version.

A further source of oddity can derive from the 1995 release of Cork-encoded fonts (see question 38), which introduced an alternative hyphen character. The \TeX{} 2.\alpha configuration files in the font release specified use of the alternative hyphen, and this could produce odd effects with words containing an explicit hyphen. The font configuration files in the December 1995 release of \TeX{} 2.\alpha do not use the alternative hyphen character, and therefore removed this source of problems; the solution, again, is to upgrade your \TeX{}.

\TeX{} 2.09: obsolete/macros/latex209/distribs/latex209.tar

\texttt{plain.tex}: macros/plain/base

169 \textbf{(Merely) peculiar hyphenation}

You may have found that \TeX{}’s famed automatic word-division does not produce the break-points recommended by your dictionary. This may be because \TeX{} is set up for American English, whose rules for word division (as specified, for example, in Webster’s Dictionary) are completely different from the British ones (as specified, for example, in the Oxford Dictionaries). This problem is being addressed by the UK \TeX{} User community (see \textit{Baskerville}, issue 4.4) but an entirely satisfactory solution will take time; the current status is to be found on CTAN (see question 136 for instructions on adding this new “language”).

\textit{UK patterns}: language/hyphenation/ukhyphen.tex

170 \textbf{Accented words aren’t hyphenated}

\TeX{}’s algorithm for hyphenation gives up when it encounters an \texttt{\accent} command; there are good reasons for this, but it means that quality typesetting in non-English languages can be difficult.

For \TeX{} macro packages, you can avoiding the effect by using an appropriately encoded font (for example, a Cork-encoded font — see question 38) which contains
accented letters as single glyphs. \LaTeX{} users can achieve this end simply by adding the command
\begin{verbatim}
\usepackage[T1]{fontenc}
\end{verbatim}
to the preamble of their document. Other encodings (notably LT1, promoted by Y&Y — see question 51) may be used in place of T1. Indeed, most current 8-bit \TeX{} font encodings will ‘work’ with the relevant sets of hyphenation patterns.

In the future, perhaps, Omega (see question 206) will provide a rather different solution.

171 Enlarging \TeX{}

The \TeX{} error message ‘capacity exceeded’ covers a multitude of problems. What has been exhausted is listed in brackets after the error message itself, as in:

```
! \TeX{} capacity exceeded, sorry
... [main memory size=263001].
```

Most of the time this error can be fixed without enlarging \TeX{}. The most common causes are unmatched braces, extra-long lines, and poorly-written macros. Extra-long lines are often introduced when files are transferred incorrectly between operating systems, and line-endings are not preserved properly (the tell-tale sign of an extra-long line error is the complaint that the ‘buf_size’ has overflowed).

If you really need to extend your \TeX{}’s capacity, the proper method depends on your installation. There is no need (with modern \TeX{} implementations) to change the defaults in Knuth’s WEB source; but if you do need to do so, use a change file to modify the values set in module 11, recompile your \TeX{} and regenerate all format files.

Modern implementations allow the sizes of the various bits of \TeX{}’s memory to be changed semi-dynamically. Some (such as em\TeX{}) allow the memory parameters to be changed in command-line switches when \TeX{} is started; most frequently, a configuration file is read which specifies the size of the memory. On \web{}-based systems, this file is called \texttt{texmf.cnf}: see the documentation that comes with the distribution for other implementations. Almost invariably, after such a change, the format files need to be regenerated after changing the memory parameters.

172 Moving tables and figures in \LaTeX{}

Tables and figures have a tendency to surprise, by floating away from where they were specified to appear. This is in fact perfectly ordinary document design; any professional typesetting package will float figures and tables to where they’ll fit without violating the certain typographic rules. Even if you use the placement specifier \texttt{h} for ‘here’, the figure or table will not be printed ‘here’ if doing so would break the rules; the rules themselves are pretty simple, and are given on page 198, section C.9 of the \LaTeX{} manual. In the worst case, \LaTeX{}’s rules can cause the floating items to pile up to the extent that you get an error message saying “Too many unprocessed floats” (see question 203). What follows is a simple checklist of things to do to solve these problems (the checklist talks throughout about figures, but applies equally well to tables, or to “non-standard” floats defined by the \texttt{float} or other packages).

- Do your figures need to float at all? If not, consider the [H] placement option offered by the \texttt{float} package: figures with this placement are made up to look as if they’re floating, but they don’t in fact float. Beware outstanding floats, though: the \texttt{\caption} commands are numbered in the order they appear in the document, and a [H] float can ‘overtake’ a float that hasn’t yet been placed, so that figures numbers get out of order.
- Are the placement parameters on your figures right? The default (tbp) is reasonable, but you can reasonably change it (for example, to add an h). Whatever you do, don’t omit the ‘p’; doing so could cause \LaTeX{} to believe that if you can’t have your figure \textit{here}, you don’t want it \textit{anywhere}. (\LaTeX{} does try hard to avoid being confused in this way…)
- \LaTeX{}’s own float placement parameters could be preventing placements that seem entirely “reasonable” to you — they’re notoriously rather conservative. To encourage \LaTeX{} not to move your figure, you need to loosen its demands. (The
most important ones are the ratio of text to float on a given page, but it's sensible to have a fixed set that changes the whole lot, to meet every eventuality.)
\renewcommand{\topfraction}{.85}
\renewcommand{\bottomfraction}{.7}
\renewcommand{\textfraction}{.15}
\renewcommand{\floatpagefraction}{.66}
\renewcommand{\dbltopfraction}{.66}
\renewcommand{\dblfloatpagefraction}{.66}
\setcounter{topnumber}{9}
\setcounter{bottomnumber}{9}
\setcounter{totalnumber}{20}
\setcounter{dbltopnumber}{9}
The meanings of these parameters are described on pages 199–200, section C.9 of the \LaTeX\ manual.

- Are there places in your document where you could ‘naturally’ put a \clearpage command? If so, do: the backlog of floats is cleared after a \clearpage. (Note that the \chapter command in the standard book and report classes implicitly executes \clearpage, so you can’t float past the end of a chapter.)
- Try the placeins package: it defines a \FloatBarrier command beyond which floats may not pass. A package option allows you to declare that floats may not pass a \section command, but you can place \FloatBarriers wherever you choose.
- Have a look at the \LaTeX\ \texttt{2}\epsilon afterpage package. Its documentation gives as an example the idea of putting \clearpage after the current page (where it will clear the backlog, but not cause an ugly gap in your text), but also admits that the package is somewhat fragile. Use it as a last resort if the other two possibilities below don’t help.
- If you would actually like great blocks of floats at the end of each of your chapters, try the morefloats package; this ‘simply’ increases the number of floating inserts that \LaTeX\ can handle at one time (from 18 to 36).
- If you actually wanted all your figures to float to the end (e.g., for submitting a draft copy of a paper), don’t rely on \LaTeX\’s mechanism: get the endfloat package to do the job for you.

afterpage.sty: Distributed as part of macros/latex/required/tools
endfloat.sty: macros/latex/contrib/support/endfloat
float.sty: macros/latex/contrib/support/float
morefloats.sty: macros/latex/contrib/other/misc/morefloats.sty
placeins.sty: macros/latex/contrib/other/misc/placeins.sty

173 \pagestyle{empty} on first page in \LaTeX

If you use \pagestyle{empty}, but the first page is numbered anyway, you are probably using the \maketitle command too. The behaviour is not a bug but a feature! The standard \LaTeX\ styles are written so that initial pages (pages containing a \maketitle, \part, or \chapter) have a different page style from the rest of the document; to achieve this, the commands internally issue \thispagestyle{plain}. This is usually not acceptable behaviour if the surrounding page style is ‘empty’.

Possible workarounds include:

- Put \thispagestyle{empty} immediately after the \maketitle command, with no blank line between them.
- Use the fancyhdr package, which allows you to customise the style for initial pages independently of that for body pages.
- Use the nopageno package, which suppresses all page numbers by affecting the behaviour of page style commands.

fancyhdr.sty: macros/latex/contrib/support/fancyhdr
nopageno.sty: macros/latex/contrib/support/carlisle/nopageno.sty
174 Underlined text won’t break

Knuth made no provision for underlining text: he took the view that underlining is not a typesetting operation, but rather one that provides emphasis on typewriters, which typically offer but one typeface. The corresponding technique in typeset text is to switch from upright to italic text (or vice-versa): the \texttt{\LaTeX} command \texttt{\textit{}} does just that to its argument.

Nevertheless, typographically illiterate people (such as those that specify double-spaced thesis styles — see question 96) continue to require underlining of us, so \LaTeX as distributed defines an \texttt{\underline{}} command that applies the mathematical ‘underbar’ operation to text. This technique is not entirely satisfactory, however: the text gets stuck into a box, and won’t break at line end.

Two packages are available that solve this problem. The \texttt{ulem} package redefines the \texttt{\textit{}} command to underline its argument; the underlined text thus produced behaves as ordinary emphasised text, and will break over the end of a line. (The package is capable of other peculiar effects, too: read its documentation, contained within the file itself.) The \texttt{soul} package defines an \texttt{\ul{}} command (after which the package is, in part, named) that underlines running text.

\texttt{ulem.sty}: \texttt{macros/latex/contrib/other/misc/ulem.sty}
\texttt{soul.sty}: \texttt{macros/latex/contrib/supported/soul}

175 Odd behaviour of \texttt{\rm}, \texttt{\bf}, etc.

If commands such as \texttt{\rm} and \texttt{\bf} have suddenly stopped working in \LaTeX in the way that you expect, it is likely that your system administrator has installed a version of \LaTeX\ 2.09 with a prototype version of the NFSS (now part of \LaTeX\ 2\epsilon). Complain loudly; ask your system administrator to replace this version with \LaTeX\ 2\epsilon, in which commands such as \texttt{\rm} and \texttt{\bf} work just as before if you are using one of the standard classes — \texttt{article}, \texttt{report} and \texttt{book} (among others). In the meantime, use the option \texttt{oldlfont.sty}, which should have been installed at the same time as NFSS.

176 Old \LaTeX\ font references such as \texttt{\tenrm}

\LaTeX\ 2.09 defined a large set of commands for access to the fonts that it had built in to itself. For example, various flavours of \texttt{cmr} could be found as \texttt{\fivecmr}, \texttt{\sixcmr}, \texttt{\sevencmr}, \texttt{\egtexttt{\tencmr}}, \texttt{\elevencmr}, \texttt{\twelvecmr}, \texttt{\frtenrm}, \texttt{\svtenrm}, \texttt{\twftenrm} and \texttt{\twelvecmr}. These commands were never documented, but certain packages nevertheless used them to achieve effects they needed.

Since the commands weren’t public, they weren’t included in \LaTeX\ 2\epsilon; to use the unconverted \LaTeX\ 2.09 packages under \LaTeX\ 2\epsilon, you need also to include the \texttt{rawfonts} package (which is part of the \LaTeX\ 2\epsilon distribution).

177 Missing symbol commands

You’re processing an old document, and some symbol commands such as \texttt{\Box} and \texttt{\H}d appear no longer to exist. These commands were present in the core of \LaTeX\ 2.09, but are not in current \LaTeX. They are available in the \texttt{latexsym} package (which is part of the \LaTeX\ distribution), as well as the \texttt{amsfonts} package (though that may not be available on your system).

Alternatively, your system may still be running \LaTeX\ 2.09, but with the (old) NFSS installed. This is the same problem as question 175, and the solution is the same: use the \texttt{oldlfonts.sty} option.

178 \LaTeX\ gets cross-references wrong

Sometimes, however many times you run \LaTeX, the cross-references are just wrong. Remember that the \texttt{\label{}} command must come \texttt{\textit{after}} the \texttt{\caption{}} command, or be part of it. For example,

\begin{verbatim}
\begin{figure}
\caption{A Figure}
\label{fig}
\end{figure}
\end{verbatim}
179 Where are the \texttt{msx} and \texttt{msy} fonts?

The \texttt{msx} and \texttt{msy} fonts were designed by the American Mathematical Society in the very early days of \TeX{}, for use in typesetting papers for mathematical journals. They were designed using the ‘old’ \texttt{METAFONT}, which wasn’t portable and is no longer available; for a long time they were only available in 300dpi versions which only imperfectly matched modern printers. The AMS has now redesigned the fonts, using the current version of \texttt{METAFONT}, and the new versions are called the \texttt{msa} and \texttt{msb} families; they are available from \texttt{fonts/amsfonts/sources/symbols}.

Nevertheless, \texttt{msx} and \texttt{msy} continue to turn up to plague us. There are, of course, still sites that haven’t got around to upgrading; but, even if everyone upgraded, there would still be the problem of old documents that specify them.

If you have a \texttt{.tex} source that requests \texttt{msx} and \texttt{msy}, the best technique is to edit it so that it requests \texttt{msa} and \texttt{msb} (you only need to change the single letter in the font names).

If you have a DVI file that requests the fonts, there is a package of virtual fonts (see question 33) to map the old to the new series; it’s available in \texttt{fonts/vf-files/msx2msa}.

180 Where are the \texttt{am} fonts?

One still occasionally comes across a request for the \texttt{am} series of fonts. The initials stood for ‘Almost [Computer] Modern’, and they were the predecessors of the Computer Modern fonts that we all know and love (or hate). There’s not a lot one can do with these fonts; they are (as their name implies) almost (but not quite) the same as the \texttt{cm} series; if you’re faced with a document that requests them, all you can reasonably do is to edit the document. The appearance of DVI files that request them is sufficiently rare that no-one has undertaken the mammoth task of creating a translation of them by means of virtual fonts; however, most drivers let you have a configuration file in which you can specify font substitutions. If you specify that every \texttt{am} font should be replaced by its corresponding \texttt{cm} font, the output should be almost correct.

181 \LaTeX{} won’t produce a \LaTeX{} format

\LaTeX{} 1.20e, as distributed, ceased to work as from 1 December 2000. Since 1.20e is not actively being developed, the 2000/06/01 release of \LaTeX{} was not integrated into the distribution. Since \LaTeX{} (prior to 2000/06/01) believed it should be upgraded every six months, the format making code sees a version that is nominally 18 months (three versions) old, and refuses to proceed.

The solution is to be found by reading \url{http://www.miktex.org/1.20/important.html}; in that page, there is a link to a replacement \texttt{latex.zip} for the distribution, and instructions for installing it.

The problem has been fixed in versions of \LaTeX{} released since 23 January 2001.

182 Start of line goes awry

This answer concerns two sorts of problems: errors of the form

\begin{verbatim}
! Missing number, treated as zero.
<to be read again>
g
</*> [grump]
\end{verbatim}

and those where a single asterisk at the start of a line mysteriously fails to appear in the output.

Both problems arise because \texttt{\textbackslash\textbackslash*} means “break the line here, and inhibit page break following the line break”; the command \texttt{\textbackslash\textbackslash[\textit{dimen}]\textbackslash*} means “break the line here and add \textit{dimen} extra vertical space afterwards”.

\footnote{The fonts acquired their label ‘Almost’ following the realisation that their first implementation in \texttt{METAFONT79} still wasn’t quite right; Knuth’s original intention had been that they were the final answer.}
So why does `\` get confused by these things at the start of a line? It’s looking for the first non-blank thing, and in the test it uses ignores the end of the line in your input text.

The solution is to enclose the stuff at the start of the new line in braces:

```
\{ttfamily
  /* C-language comment\n  {[grump]} I don’t like this format\n  {*/}
\}
```

(The above text derives from an actual post to `comp.text.tex`; this particular bit of typesetting could plainly also be done using the `verbatim` environment.)

The problem also appears in maths mode, in arrays and so on. In this case, large-scale bracketing of things is not a good idea; the \TeX primitive \relax (which does nothing except to block searches of this nature) may be used. From another `comp.text.tex` example:

```
\begin{eqnarray}
  [a] &=& b \\
  \relax[a] &=& b
\end{eqnarray}
```

183 Weird characters in `dvips` output

You’ve innocently generated output, using `dvips`, and there are weird transpositions in it: for example, the fi ligature has appeared as a £ symbol. This is an unwanted side-effect of the precautions about generating Postscript for PDF outlined in question 70. The `-G1` switch discussed in that question is appropriate for Knuth’s text fonts, but doesn’t work with text fonts that don’t follow Knuth’s patterns (such as fonts supplied by Adobe).

If the problem arises, suppress the `-G1` switch: if you were using it explicitly, don’t; if you were using `-Ppdf`, add `-G0` to suppress the implicit switch in the pseudo-printer file.

184 Controlling widows and orphans

Widows (the last line of a paragraph at the start of a page) and orphans (the first line of a paragraph at the end of a page) interrupt the reader’s flow, and are generally considered “bad form”. (\E)\TeX takes some precautions to avoid them, but completely automatic prevention is often impossible. If you are typesetting your own text, consider whether you can bring yourself to change the wording slightly so that the page break will fall differently.

The page maker, when forming a page, takes account of \widowpenalty and \clubpenalty (which relates to orphans!). These penalties are usually set to the moderate value of 150; this offers mild discouragement of bad breaks. You can increase the values by saying (for example) `\widowpenalty=500`; however, vertical lists (such as pages are made of) typically have rather little stretchability or shrinkability, so if the page maker has to balance the effect of stretching the unstretchable and being penalised, the penalty will seldom win. This dichotomy can be avoided by allowing the pagemaker to run pages short, by using the `\raggedbottom` directive; however, many publishers insist on the default `\flushbottom`; it is seldom acceptable to introduce stretchability into the vertical list, except at points (such as section headings) where the document design explicitly permits it.

Once you’ve exhausted the automatic measures, and have a final draft you want to “polish”, you have to indulge in manual measures. To get rid of an orphan is simple: precede the paragraph with `\clearpage` and the paragraph can’t start in the wrong place.

Getting rid of a widow can be more tricky. If the paragraph is a long one, it may be possible to set it ‘tight’: say `\looseness=-1` immediately after the last word of the paragraph. If that doesn’t work, try adjusting the page size: `\enlarge	 this\p age` {\baselineskip} may do the job, and get the whole paragraph on one page. Reducing the size of the page by `\enlarge\this\p age{\baselineskip}` may produce a (more-or-less) acceptable “two-line widow”. (Note: `\looseness=1`, increasing the
line length by one, seldom seems to work — the looser paragraph typically has a one-
word final line, which doesn’t look much better than the straight widow.)

U Why does it do that?

185 What’s going on in my \include commands?

The original \LaTeX provided the \include command to address the problem of long documents: with the relatively slow computers of the time, the companion \includeonly facility was a boon. With the vast increase in computer speed, \includeonly is less valuable (though it still has its place in some very large projects). Nevertheless, the facility is retained in current \LaTeX, and causes some confusion to those who misunderstand it.

In order for \includeonly to work, \include makes a separate .aux file for each included file, and makes a ‘checkpoint’ of important parameters (such as page, figure, table and footnote numbers); as a direct result, it must clear the current page both before and after the \include command. What’s more, this mechanism doesn’t work if a \include command appears in a file that was included itself: \LaTeX diagnoses this as an error.

So, we can now answer the two commonest questions about \include:

- Why does \LaTeX throw a page before and after \include commands?
 Answer: because it has to. If you don’t like it, replace the \include command with \input — you won’t be able to use \includeonly any more, but you probably don’t need it anyway, so don’t worry.

- Why can’t I nest \include files? — I always used to be able to under \LaTeX 2.09.
 Answer: in fact, you couldn’t, even under \LaTeX 2.09, but the failure wasn’t diagnosed. However, since you were happy with the behaviour under \LaTeX 2.09, replace the \include commands with \input commands (with \clearpage as appropriate).

186 Why does it ignore paragraph parameters?

When \TeX is laying out text, it doesn’t work from word to word, or from line to line; the smallest complete unit it formats is the paragraph. The paragraph is laid down in a buffer, as it appears, and isn’t touched further until the end-paragraph marker is processed. It’s at this point that the paragraph parameters have effect; and it’s because of this sequence that one often makes mistakes that lead to the paragraph parameters not doing what one would have hoped (or expected).

Consider the following sequence of \LaTeX:

\begin{verbatim}
{\raggedright % declaration for ragged text
Here's text to be ranged left in our output,
but it's the only such paragraph, so we now
end the group.}

Here's more that needn't be ragged...
\end{verbatim}

\TeX will open a group, and set the ragged-setting parameters within that group; it will then save a couple of sentences of text and close the group (thus restoring the previous value of the ragged-setting parameters). Then it encounters a blank line, which it knows to treat as a \par token, so it typesets the two sentences; but because the enclosing group has now been closed, the parameter settings have been lost, and the paragraph will be typeset normally.

The solution is simple: close the paragraph inside the group, so that the setting parameters remain in place. An appropriate way of doing that is to replace the last three lines above with:

\begin{verbatim}
end the group.\par
Here's more that needn't be ragged...
\end{verbatim}

In this way, the paragraph is completed while the setting parameters are still in force within the enclosing group.
Another alternative is to define an environment that does the appropriate job for you. For the above example, \LaTeX already defines an appropriate one:
\begin{flushleft}
Here’s text to be ranged left...
\end{flushleft}

187 Why doesn’t \verb work within...?

The \LaTeX verbatim commands work by changing category codes. Knuth says of this sort of thing “Some care is needed to get the timing right...”, since once the category code has been assigned to a character, it doesn’t change. So \verb has to assume that it is getting the first look at its parameter text; if it isn’t, \TeX has already assigned category codes so that \verb doesn’t have a chance. For example:

\verb+\error+

will work (typesetting ‘\error’), but

\newcommand{\unbrace}[1]{#1}
\unbrace{\verb+\error+}

will not (it will attempt to execute \error). Other errors one may encounter are ‘\verb ended by end of line’, or even ‘\verb illegal in command argument’.

This is why the \LaTeX book insists that verbatim commands must not appear in the argument of any other command; they aren’t just fragile, they’re quite unusable in any command parameter, regardless of \protection (see question 158).

The first question to ask yourself is: “is \verb actually necessary?”.

- If {\texttt your text} produces the same result as \verb+your text+, then there’s no need of \verb in the first place.
- If you’re using \verb to typeset a URL or email address or the like, then the \url package will help: it doesn’t suffer from the problems of \verb.
- If you’re putting \verb into the argument of a boxing command (such as \fbox), consider using the lrbox environment:

\begin{lrbox}{\mybox}
\verb!VerbatimStuff!
\end{lrbox}
\fbox{\usebox{\mybox}}

Otherwise, there are three partial solutions to the problem.

- The fancyverb package defines a command \VerbatimFootnotes, which redefines the \footnotetext (and hence the \footnote) commands in such a way that you can include \verb commands in its argument. This approach could in principle be extended to the arguments of other commands, but it can clash with other packages: for example, \VerbatimFootnotes interacts poorly with the para option to the footmisc package.
- The fancyverb package defines a command \SaveVerb, with a corresponding \UseVerb command, that allow you to save and then to reuse the content of its argument; for details of this extremely powerful facility, see the package documentation.
- Rather simpler is the verbdef package, which defines a (robust) command which expands to the verbatim argument given.
- If you have a single character that is giving trouble (in its absence you could simply use \texttt{my\string_name}), consider using \string, \texttt{my\string_name} typesets the same as \verb+my_name+, and will work in the argument of a command. It won’t, however, work in a moving argument, and no amount of \protection (see question 158) will make it work in such a case.

\verbdef.sty: macros/latex/contrib/other/misc/verbdef.sty
url.sty: macros/latex/contrib/other/misc/url.sty
fancyverb.sty: macros/latex/contrib/support/fancyverb
188 Case-changing oddities

\TeX{} provides two primitive commands \texttt{\textbackslash uppercase} and \texttt{\textbackslash lowercase} to change the case of text; they're not much used, but are capable creating confusion.

The two commands do not expand the text that is their parameter — the result of \texttt{\textbackslash uppercase(abc)} is 'ABC', but \texttt{\textbackslash uppercase}\{\texttt{abc}\} is always '{\texttt{abc}}', whatever the meaning of \texttt{abc}. The commands are simply interpreting a table of equivalences between upper- and lowercase characters. They have (for example) no mathematical sense, and

\texttt{\textbackslash uppercase\{About \texttt{$y=f(x)$}\}}

will produce

\texttt{ABOUT $Y=F(X)$}

which is probably not what is wanted.

In addition, \texttt{\textbackslash uppercase} and \texttt{\textbackslash lowercase} do not deal very well with non-American characters, for example \texttt{\textbackslash uppercase\{\ae\}} is the same as \texttt{\ae}.

\TeX{} provides commands \texttt{\textbackslash MakeUppercase} and \texttt{\textbackslash MakeLowercase} which fixes the latter problem. These commands are used in the standard classes to produce upper case running heads for chapters and sections.

Unfortunately \texttt{\textbackslash MakeUppercase} and \texttt{\textbackslash MakeLowercase} do not solve the other problems with \texttt{\textbackslash uppercase}, so for example a section title containing \texttt{\textbackslash begin\{tabular\}} \ldots \texttt{\textbackslash end\{tabular\}} will produce a running head containing \texttt{\textbackslash begin\{TABLE\}}. The simplest solution to this problem is using a user-defined command, for example:

\begin{verbatim}
\newcommand\mytable\{\texttt{\begin{tabular}... \texttt{\end{tabular}}
\section\{A section title \protect\mytable{} with a table}
\end{verbatim}

Note that \texttt{\mytable} has to be protected, otherwise it will be expanded and made upper case; you can achieve the same result by declaring it with \texttt{\DeclareRobustCommand}, in which case the \texttt{\protect} won't be necessary.

David Carlisle's \texttt{textcase} package (from macros/latex/contrib/supportered\texttt{carlisle}) addresses many of these problems in a transparent way. It defines commands \texttt{\textbackslash MakeTextUppercase} and \texttt{\textbackslash MakeTextLowercase} which do upper- or lower-case, with the fancier features of the \TeX{} standard \texttt{\textbackslash Make*}-commands but without the problems mentioned above. Load the package with \texttt{\usepackage[overload]{textcase}}, and it will redefine the standard commands, so that section headings and the like don't produce broken page headings.

189 Why are # signs doubled in macros?

The way to think of this is that ## gets replaced by # in just the same way that #1 gets replaced by 'whatever is the first argument'.

So if you define a macro and use it as:

\begin{verbatim}
\def\a\{++++#1+++#1+++#1+++\} \a\{b\}
\end{verbatim}

the macro expansion produces ‘++++b+++b+++b+++’, which people find normal. However, if we now replace part of the macro:

\begin{verbatim}
\def\a\{++++#1++++\def\x \#1\{xxx\#1\}\} \a\{b\}
\end{verbatim}

\texttt{\a\{b\}} will expand to ‘+++b+++\texttt{\def\x b\{xxx\#1\}}’. This defines \texttt{\x} to be a macro delimited by \texttt{b}, and taking no arguments, which people may find strange, even though it is just a specialisation of the example above. If you want \texttt{\a} to define \texttt{\x} to be a macro with one argument, you need to write:

\begin{verbatim}
\def\a\{++++#1++++\def\x \#1\{xxx\#1\}\} \a\{b\}
\end{verbatim}

and \texttt{\a\{b\}} will expand to ‘+++b+++\texttt{\def\x \#1\{xxx\#1\}}’, because #1 gets replaced by 'b' and ## gets replaced by #.

To nest a definition inside a definition inside a definition then you need ######1, as at each stage ## is replaced by #. At the next level you need 8 #s each time, and so on.

190 Why does \LaTeX{} split footnotes across pages?

\LaTeX{} splits footnotes when it can think of nothing better to do. Typically, when this happens, the footnote mark is at the bottom of the page, and the complete footnote
would overfill the page. L\TeX{} could try to salvage this problem by making the page short of both the footnote and the line with the footnote mark, but its priorities told it that splitting the footnote would be preferable.

As always, the best solution is to change your text so that the problem doesn’t occur in the first place. Consider whether the text that bears the footnote could move earlier in the current page, or on to the next page.

If this isn’t possible, you might want to change L\TeX{}’s perception of its priorities: they’re controlled by \interfootnotelinepenalty — the larger it is, the less willing L\TeX{} is to split footnotes.

Setting
\begin{verbatim}
\interfootnotelinepenalty=10000
\end{verbatim}
inhibits split footnotes altogether, which will cause 'Underfull \vbox' messages unless you also specify \raggedbottom. The default value of the penalty is 100, which is rather mild.

An alternative technique is to juggle with the actual size of the pages. \enlargethispage changes the size of the current page by its argument (for example, you might say \enlargethispage{\baselineskip} to add a single line to the page, but you can use any ordinary L\TeX{} length such as 15mm or \textasciitilde{}20pt as argument). Reducing the size of the current page could force the offending text to the next page; increasing the size of the page may allow the footnote to be included in its entirety. It may be necessary to change the size of more than one page.

191 Getting \marginpar on the right side

In twoside documents, L\TeX{} makes stirling attempts to put \marginpars in the correct margin (the outer or the gutter margin, according to the user’s command). However, a booby-trap arises because \TeX{} runs its page maker asynchronously. If a \marginpar is processed while page \textit{n} is being being built, but doesn’t get used until page \textit{n+1}, then the \marginpar will turn up on the wrong side of the page.

The solution to the problem is for L\TeX{} to ‘remember’ which side of the page each \marginpar should be on. The \texttt{mparhack} package does this, using marks stored in the \texttt{.aux} file.

\texttt{mparhack.sty}: macros/latex/contrib/supported/mparhack

192 Why can’t I load PICT\TeX{}?

P\TeX{} is a resource hog; fortunately, most modern \TeX{} implementations offer generous amounts of space, and most modern computers are pretty fast, so users aren’t too badly affected by its performance.

However, P\TeX{} has the further unfortunate tendency to fill up \TeX{}’s fixed-size arrays — notably the array of 256 ‘dimension’ registers. This is a particular problem when you’re using \texttt{pictex.sty} with L\TeX{} and some other packages that also need dimension registers. When this happens, you will see the \TeX{} error message:

! No room for a new \texttt{dimen}.

There is nothing that can directly be done about this error: you can’t extend the number of available \texttt{dimen} registers without extending \TeX{} itself. (∼-\TeX{} and \Omega{} — see questions 207 and 206 respectively — both do this, as does MicroPress Inc’s VT\TeX{} — see question 51.) Since you can’t (ordinarily) extend \TeX{}, you need to change P\TeX{}; unfortunately P\TeX{}’s author is no longer active in the \TeX{} world, so one must resort to patching. There are two solutions available.

The Con\TeX{} module \texttt{=pictex.tex} (for Plain \TeX{} and variants) or the corresponding L\TeX{} \texttt{m-pictex} package provide an ingenious solution to the problem based on hacking the code of \texttt{newdimen} itself.

Alternatively, Andreas Schell’s \texttt{pictexwd} and related packages replace P\TeX{} with a version that uses 33 fewer \texttt{dimen} registers; so use \texttt{pictexwd} in place of \texttt{pictex} (either as a L\TeX{} package, or as a file to read into Plain \TeX{}).

And how does one use P\TeX{} anyway, given that the manual is so hard to come by (see question 28)? Fortunately for MS-DOS and Windows users, the \texttt{MathsPic} system may be used to translate a somewhat different language into P\TeX{} commands; and
the *MathsPic* manual is free (and part of the distribution). *MathsPic* is written in *Basic*; a version written in *Perl* is under development, and should be available soon.

m-pctex.sty: Distributed as part of macros/context/cont-tmf.zip

m-pctex.tex: Distributed as part of macros/context/cont-tmf.zip

MathsPic: graphics/pictex/mathspic

pictexwd.sty: Distributed as part of graphics/pictex/addon

193 No line here to end

The error

```
! LaTeX Error: There's no line here to end.
```

See the *LaTeX* manual or *LaTeX Companion* for explanation.

It comes in reaction to you giving *LaTeX* a `\` command at a time when it’s not expecting it. The commonest case is where you’ve decided you want the label of a list item to be on a line of its own, so you’ve written (for example):

```latex
\begin{description}
\item[Very long label] \ \\
Text...
\end{description}
```

`\` is actually a rather bad command to use in this case (even if it worked), since it would force the ‘paragraph’ that’s made up of the text of the item to terminate a line which has nothing on it but the label. This would lead to an “Underfull \hbox” warning message (usually with ‘infinite’ badness of 10000); while this message doesn’t do any actual harm other than slowing down your *LaTeX* run, any message that doesn’t convey any information distracts for no useful purpose.

The proper solution to the problem is to write a new sort of *description* environment, that does just what you’re after. (*The *B*\TeX Companion* — see question 19 — offers a rather wide selection of variants of these things.)

The quick-and-easy solution, which avoids the warning, is to write:

```latex
\begin{description}
\item[Very long label] \hspace*{\fill} \\
Text...
\end{description}
```

which fills out the under-full line before forcing its closure. The *expdlist* package provides the same functionality with its `\breaklabel` command, and *mdwlist* provides it via its `\desclabelstyle` command.

The other common occurrence for the message is when you’re using the *center* (or *flushleft* or *flushright*) environment, and have decided you need extra separation between lines in the environment:

```latex
\begin{center}
First (heading) line\\
\\
body of the centred text...
\end{center}
```

The solution here is plain: use the `\` command in the way it’s supposed to be used, to provide more than just a single line break space. `\` takes an optional argument, which specifies how much extra space to add; the required effect in the text above can be had by saying:

```latex
\begin{center}
First (heading) line\baselineskip\\
body of the centred text...
\end{center}
```

expdlist.sty: macros/latex/contrib/unsupported/expdlist

mdwlist.sty: Distributed as part of macros/latex/contrib/unsupported/mdwtools

93
194 Where have my characters gone?

You’ve typed some apparently reasonable text and processed it, but the result contains no sign of some of the characters you typed. A likely reason is that the font you selected just doesn’t have a representation for the character in question.

For example, if I type “that will be £44.00” into an ordinary (L)\TeX document, or if I select the font rsfs10 (which contains uppercase letters only) and type pretty much anything, the £ sign, or any lowercase letters or digits will not appear in the output. There’s no actual error message, either: you have to read the log file, where you’ll find cryptic little messages like

```
Missing character: There is no `--a3 in font cmr10!
Missing character: There is no 3 in font rsfs10!
```

(the former demonstrating my \TeX’s unwillingness to deal in characters which have the eighth bit set, while the rsfs10 example shows that \TeX will log the actual character in error, if it thinks it’s possible).

Somewhat more understandable are the diagnostics you may get from dvips when using the OT1 and T1 versions of fonts that were supplied in Adobe standard encoding:

```
dvips: Warning: missing glyph ‘Delta’
```

The process that generates the metrics for using the fonts generates an instruction to dvips to produce these diagnostics, so that their non-appearance in the printed output is less surprising than it might be. Quite a few glyphs available in Knuth’s text encodings and in the Cork encoding are not available in the Adobe fonts. In these cases, there is a typeset sign of the character: dvips produces a black rectangle of whatever size the concocted font file has specified.

195 “Rerun” messages won’t go away

The (L)\TeX message “Rerun to get crossreferences right” is supposed to warn the user that his job needs to be processed again, since labels seem to have changed since the previous run. (\TeX compares the labels it’s created this time round with what it found from the previous run when it started; it does this comparison at \texttt{\end{document}}.)

Sometimes, the message won’t go away: however often you reprocess your document, \TeX still tells you that “Label(s) may have changed”. This can sometimes be caused by a broken package: both footmisc (with the perpage option) and hyperref have been known to give trouble, in the past: if you are using either, check you have the latest version, and upgrade if possible.

However, there is a rare occurrence when this error can happen as a result of pathological structure of the document itself. Suppose you have pages numbered in roman, and you add a reference to a label on page “ix” (9). The presence of the reference pushes the thing referred to onto page “x” (10), but since that’s a shorter reference the label moves back to page “ix” at the next run. Such a sequence can obviously not terminate…

The only solution to this problem is to make a small change to your document (something as small as adding or deleting a comma will often be enough).

```
footmisc.sty: macros/latex/contrib/supported/footmisc
hyperref.sty: macros/latex/contrib/supported/hyperref
```

V The joy of \TeX errors

196 How to approach errors

Since \TeX is a macroprocessor, its error messages are often difficult to understand; this is a (seemingly invariant) property of macroprocessors. Knuth makes light of the problem in the \TeXbook, suggesting that you acquire the sleuthing skills of a latter-day Sherlock Holmes; while this approach has a certain romantic charm to it, it’s not good for the ‘production’ user of (L)\TeX. This answer (derived, in part, from an article by Sebastian Rahtz in \emph{TUGboat} 16(4)) offers some general guidance in dealing with \TeX error reports, and other answers in this section deal with common (but perplexing) errors that you may encounter. There’s a long list of “hints” in Sebastian’s article, including the following:
• Look at \TeX errors; those messages may seem cryptic at first, but they often contain a straightforward clue to the problem. See question 197 for further details.
• Read the .log file; it contains hints to things you may not understand, often things that have not even presented as error messages.
• Be aware of the amount of context that \TeX gives you. The error messages gives you some bits of \TeX code (or of the document itself), that show where the error “actually happened”; it’s possible to control how much of this ‘context’ \TeX actually gives you. \LATEX (nowadays) instructs \TeX only to give you one line of context, but you may tell it otherwise by saying
\begin{verbatim}
\setcounter{errorcontextlines}{999}
\end{verbatim}
in the preamble of your document. (If you’re not a confident macro programmer, don’t be ashamed of cutting that 999 down a bit; some errors will go on and on, and spotting the differences between those lines can be a significant challenge.)
• As a last resort, tracing can be a useful tool; reading a full (\LATEX) trace takes a strong constitution, but once you know how, the trace can lead you quickly to the source of a problem. You need to have read the \TeXbook (see question 19) in some detail, fully to understand the trace.

The command \texttt{\textbackslash tracingall} sets up maximum tracing; it also sets the output to come to the interactive terminal, which is somewhat of a mixed blessing (since the output tends to be so vast). It’s usually easiest to examine the trace by using your favourite text editor to scan the .log file.

197 The structure of \TeX error messages
\TeX’s error messages are reminiscent of the time when \TeX itself was conceived (the 1970s): they’re not terribly user-friendly, though they do contain all the information that \TeX can offer, usually in a pretty concise way.
\TeX’s error reports all have the same structure:
• An error message
• Some ‘context’
• An error prompt

The error message will relate to the \TeX condition that is causing a problem. Sadly, in the case of complex macro packages such as \LATEX, the underlying \TeX problem may be superficially difficult to relate to the actual problem in the “higher-level” macros. Many \LATEX-detected problems manifest themselves as ‘generic’ errors, with error text provided by \LATEX itself (or by a \LATEX class or package).

The context of the error is a stylised representation of what \TeX was doing at the point that it detected the error. As noted in question 196, a macro package can tell \TeX how much context to display, and the user may need to undo what the package has done. Each line of context is split at the point of the error; if the error actually occurred in a macro called from the present line, the break is at the point of the call. (If the called object is defined with arguments, the “point of call” is after all the arguments have been scanned.) For example:
\begin{verbatim}
\texttt{\textbackslash blah\ and\ so\ on}
\end{verbatim}
produces the error report
! Undefined control sequence.
1.4 \texttt{\textbackslash blah\ and\ so\ on}
while:
\begin{verbatim}
\newcommand{\texttt{\textbackslash blah}[1]}{\texttt{\textbackslash bleah #1}}
\texttt{\textbackslash blah\{to\ you\}}
\end{verbatim}
produces the error report
! Undefined control sequence.
\texttt{\textbackslash bleah #1->\texttt{\textbackslash bleah #1}}
1.5 \texttt{\textbackslash blah\{to\ you\}}, folks
If the argument itself is in error, we will see things such as
The prompt accepts single-character commands: the list of what’s available may be had by typing ?. One immediately valuable command is h, which gives you an expansion of \TeX’s original précis message, sometimes accompanied by a hint on what to do to work round the problem in the short term. If you simply type ‘return’ (or whatever else your system uses to signal the end of a line) at the prompt, \TeX will attempt to carry on (often with rather little success).

198 An extra ‘}’??

You’ve looked at your \LaTeX source and there’s no sign of a misplaced } on the line in question.

Well, no: this is \TeX’s cryptic way of hinting that you’ve put a fragile command in a moving argument (see question 158).

For example, \footnote is fragile, and if we put that in the moving argument of a \section command, as
\section{Mumble\footnote{I couldn’t think of anything better}}
we get told
\section{Mumble\protect\footnote{I couldn’t think of anything better}}

Note that, in some cases, simple \protect is not the answer; question 125 deals specifically with this case.

199 Capacity exceeded [semantic nest…]

! TeX capacity exceeded, sorry [semantic nest size=100].

... If you really absolutely need more capacity, you can ask a wizard to enlarge me.

Even though \TeX suggests (as always) that enlargement by a wizard may help, this message usually results from a broken macro or bad parameters to an otherwise working macro.

The “semantic nest” \TeX talks about is the nesting of boxes within boxes. A stupid macro can provoke the error pretty easily:
\def\silly{\hbox{here’s \silly being executed}}
\silly

The extended traceback (see question 196) does help, though it does rather run on. In the case above, the traceback consists of
\silly ->\hbox { here’s \silly being executed}
followed by 100 instances of
\silly ->\hbox { here’s \silly being executed}

The repeated lines are broken at exactly the offending macro; of course the loop need not be as simple as this — if \silly calls \dopy which boxes \silly, the effect is just the same and alternate lines in the traceback are broken at alternate positions.
200 No room for a new ‘thing’

The technology available to Knuth at the time \TeX was written is said to have been particularly poor at managing dynamic storage; as a result much of the storage used within \TeX is allocated as fixed arrays, in the reference implementations. Many of these fixed arrays are expandable in modern \TeX implementations, but size of the arrays of “registers” is written into the specification as being 256 (usually); this number may not be changed if you still wish to call the result \TeX (see question 5).

If you fill up one of these register arrays, you get a \TeX error message saying

! No room for a new \texttt{<thing>}.

The \texttt{<things> in question may be \count (the object underlying \LaTeX’s \texttt{newcounter command), \skip (the object underlying \LaTeX’s \texttt{newlength command), \box (the object underlying \LaTeX’s \texttt{newsavebox command), or \dimen, \muskip, \toks, \read, \write or \language (all types of object whose use is “hidden” in \LaTeX; the limit on the number of \read or \write objects is just 16).}

There is nothing that can directly be done about this error, as you can’t extend the number of available registers without extending \TeX itself. (Of course, \Omega and \epsilon-\TeX — see questions 206 and 207 respectively — both do this, as does MicroPress Inc’s \VTX — see question 51.)

The commonest way to encounter one of these error messages is to have broken macros of some sort, or incorrect usage of macros (an example is discussed in question 201). However, sometimes one just needs more than \TeX can offer, and when this happens, you’ve just got to work out a different way of doing things. An example is the difficulty of loading \PCTeX with \LaTeX (see question 192).

201 \texttt{epsf} gives up after a bit

Some copies of the documentation of \texttt{epsf.tex} seem to suggest that the command

\begin{verbatim}
\input epsf
\end{verbatim}

is needed for every figure included. If you follow this suggestion too literally, you get an error

! No room for a new \texttt{read} .

after a while; this is because each time \texttt{epsf.tex} is loaded, it allocates itself a new file-reading handle to check the figure for its bounding box, and there just aren’t enough of these things (see question 200).

The solution is simple — this is in fact an example of misuse of macros; one only need read \texttt{epsf.tex} once, so change

\begin{verbatim}
...
\input epsf
\epsffile(...)
...
\input epsf
\epsffile(...)
\end{verbatim}

(and so on) with a single

\begin{verbatim}
\input epsf
\epsffile(...)
\end{verbatim}

somewhere near the start of your document, and then decorate your \texttt{\epsffile} statements with no more than adjustments of \texttt{\epsfxsize} and so on.

202 Improper \texttt{\hyphenation} will be flushed

For example

\begin{verbatim}
! Improper \texttt{\hyphenation} will be flushed.
\#1->{
 \accent 19 #1}
\end{verbatim}

\begin{verbatim}
\texttt{\hyphenation{Ji-m\'e-nez}}
\end{verbatim}

(in Plain \TeX) or

\begin{verbatim}
! Improper \texttt{\hyphenation} will be flushed.
\leavevmode ->\texttt{\unhbox}
\end{verbatim}
in \LaTeX.

As mentioned in question 167, words with accents in them may not be hyphenated.
As a result, any such word is deemed improper in a \texttt{\hyphenation} command.

The solution is to use a font that contains the character in question, and to express
the \texttt{\hyphenation} command in terms of that character; this “hides” the accent from
the hyphenation mechanisms. \LaTeX users can be achieved this by use of the fontenc
package (part of the \LaTeX distribution). If you select an 8-bit font with the package,
as in \texttt{\usepackage[T1]{fontenc}}, accented-letter commands such as the \texttt{\'e} in
\texttt{\hyphenation{Ji-m\'e-nez}} automatically become the single accented character
by the time the hyphenation gets a to look at it.

\begin{question}{203}{“Too many unprocessed floats”}

If \LaTeX responds to a \texttt{\begin{figure}} or \texttt{\begin{table}} command with the error
message
\begin{verbatim}
! LaTeX Error: Too many unprocessed floats.
\end{verbatim}

See the \LaTeX manual or \LaTeX Companion for explanation.

your figures (or tables) are failing to be placed properly. \LaTeX has a limited amount
of storage for ‘floats’ (figures, tables, or floats you’ve defined yourself with the float
package); if you don’t let it ever actually typeset any floats, it will run out of space.

This failure usually occurs in extreme cases of floats moving “wrongly” (see question 172); \LaTeX has found it can’t place a float, and floats of the same type have piled
up behind it. \LaTeX’s idea is to ensure that caption numbers are sequential in the doc-
ument: the caption number is allocated when the figure (or whatever) is created, and
can’t be changed, so that placement out of order would mean figure numbers appearing
out of order in the document (and in the list of figures, or whatever). So a simple failure
to place a figure means that no subsequent figure can be placed; and hence (eventually)
the error.

Techniques for solving the problem are discussed in the floats question (172) al-
ready referenced.

The error also occurs in a long sequence of figure or table environments, with no
intervening text. Unless the environments will fit “here” (and you’ve allowed them to
go “here”), there will never be a page break, and so there will never be an opportunity
for \LaTeX to reconsider placement. (Of course, the floats can’t all fit “here” if the
sequence is sufficiently polonged: once the page fills, \LaTeX won’t place any more floats
Techniques for resolution may involve redefining the floats using the float package’s
[H] float qualifier, but you are unlikely to get away without using \texttt{\clearpage} from
time to time.

\texttt{float.sty}: macros/latex/contrib/supported/float

\begin{question}{204}{\texttt{@} in vertical mode}

The error
\begin{verbatim}
! You can't use '\spacefactor' in vertical mode.
\texttt{@}>\texttt{\spacefactor}
\end{verbatim}

comes of using a \LaTeX internal command without taking the precaution of fooling
\LaTeX that you’re inside it. The problem is discussed in detail in question 157, together
with solutions.

\chapter{Current \TeX Projects}

\begin{question}{205}{The \LaTeX3 project}

The \LaTeX3 project team (see http://www.latex-project.org/latex3.html) is
a small group of volunteers whose aim is to produce a major new document processing
system based on the principles pioneered by Leslie Lamport in the current \LaTeX. It will remain freely available and it will be fully documented at all levels.

The \LaTeX3 team’s first product (\LaTeX{} \texttt{2\varepsilon}) was delivered in 1994 (it’s now properly called “\LaTeX{}\varepsilon”, since no other version is current).

\LaTeX{} \texttt{2\varepsilon} was intended as a consolidation exercise, unifying several sub-variants of \LaTeX{} while changing nothing whose change wasn’t absolutely necessary. This has permitted the team to support a single version of \LaTeX{}\varepsilon, in parallel with development of \LaTeX{}3.

Some of the older discussion papers about directions for \LaTeX{}3 are to be found at info/ltx3pub; other (published) articles are to be found on the project web site (see \url{http://www.latex-project.org/articles.html}), as is some of the project’s experimental code (\url{http://www.latex-project.org/experimental}). You can participate in discussions of the future of \LaTeX{} through the mailing list \texttt{latex-l}.

Subscribe to the list by sending a message ‘subscribe latex-l <your name>’ to listserv@urz.Uni-Heidelberg.de

\section*{The Omega project}

Omega (\Omega) is a program built by extension of the \TeX{} sources which works internally with ‘wide’ characters (it is capable of dealing with all of Unicode version 3); this allows it to work with most scripts in the world with few difficulties from coding schemes. \Omega also has a powerful concept of input and output filters to allow the user to work with existing transliteration schemes, etc.

\Omega is an ongoing project by John Plaice and Yannis Haralambous. An email discussion list is available: subscribe by sending a message ‘subscribe omega <your name>’ to listserv@ens.fr

The base distribution of \Omega was released in November 1996. The latest version is available via systems/omega

Implementations of \Omega are available as part of the te\TeX{}, \miktex, \fp\TeX{} and CMaTeX\TeX{} distributions (see question 49); it is also distributed on the \TeX{} Live CD-ROM (see question 48).

\section*{The \texttt{N\TeX} project}

The \texttt{N\TeX} project first saw the light of day at the Hamburg meeting of DANTE during 1992, as a response to an aspiration to produce something even better than \TeX{}. The project is not simply enhancing \TeX{}, for two reasons: first, that \TeX{} itself has been frozen by Knuth (see question 17), and second, even if they were allowed to develop the program, some members of the \texttt{N\TeX} team feel that \TeX{} in its present form is simply unsuited to further development. While all those involved in the project are involved with, and committed to, \TeX{}, they recognise that the end product may very well have little in common with \TeX{} other than its philosophy.

Initially, the group concentrated on extending \TeX{} \textit{per se}: extensions and enhancements to \TeX{} were implemented through the standard medium of a change-file. These extensions and enhancements, together with \TeX{} proper, form a system called \texttt{e-\TeX{}}, which is 100% compatible with \TeX{}; furthermore, \texttt{e-\TeX{}} can construct a format that is “\TeX{}”: no extensions or enhancements are present.

The project’s most recent product has been a version of \TeX{} written (from scratch) in Java. As might be expected, this first re-implementation runs rather slowly, but its operation has been demonstrated in public. It is expected that the analysis that has been undertaken will be of use in building a system that might provide a stable basis for typesetting in the future.

A distribution of \texttt{e-\TeX{}} was made available in November 1996. The latest version is available via systems/e-tex; \texttt{e-\TeX{}} is also distributed on the \TeX{} Live CD-ROM (see question 48).

\section*{The PDF\TeX{} project}

PDF\TeX{} (formerly known as \TeX{}2PDF) arose from Hán Thế Thành’s post-graduate research at Masaryk University, Brno, Czech Republic. The basic idea is very simple: to provide a version of \TeX{} that can output PDF as an alternative format to DVI. PDF\TeX{}
implements a small number of new primitives, to switch to PDF output, and to control various PDF features. Hán Thế Thanh has worked on PDFTEX throughout his Ph.D. research into typesetting, and the latest release includes facilities written to support novel typesetting techniques.

The latest version of PDFTEX is available from systems/pdftex, and implementations are available as part the teTeX, miktex, fptex, and CMacTeX distributions (see question 49); it is also distributed on the TeX Live CD-ROM (see question 48). A version (by the author of CMacTeX) for use with OzTeX is also available at nonfree/systems/mac/pdftex/pdftex_for_oztex.sit.bin

A mailing list discussing PDFTEX is available; send a message containing (just) subscribe pdftex to majordomo@tug.org (you will be required to confirm your subscription).

209 Future WEB technologies and (L)TeX

An earlier question (65) addresses the issue of converting existing (L)TeX documents for viewing on the Web as HTML. All the present techniques are somewhat flawed: the answer explains why.

However, things are changing, with better font availability, cunning HTML programming and the support for new Web standards.

Font technologies Direct representation of mathematics in browsers has been hampered up to now by the limited range of symbols in the fonts one can rely on being available. In the near future, we can expect rather wide availability of Unicode fonts with better coverage of symbols.

XML The core of the range of new standards is XML, which provides a framework for better structured markup; limited support for for it has already appeared in some browsers.

Conversion of (L)TeX source to XML is already available (through TeX4ht at least), and work continues in that arena. The alternative, authoring in XML (thus producing documents that are immediately Web-friendly, if not ready) and using (L)TeX to typeset is also well advanced. One useful technique is transforming the XML to LaTeX, using XSLT, and then simply using LaTeX; alternatively, one may typeset direct from the XML source (see question 66).

Direct representation of mathematics MathML is a standard for representing maths on the Web; its original version is distinctly limited, but efforts to give it greater richness (approaching that of TeX) are under way. Browser support for MathML (e.g., in amaya, a version of the Netscape ‘Open Source’ browser mozilla and in specially extended versions of Internet Explorer) is becoming available. There’s evidence that (L)TeX users are starting to use such browsers.

Work both the TeX4ht and TtH projects, to produce MathML is well advanced.

Graphics SVG is a standard for graphics representation on the web. While the natural use is for converting existing figures, representations of formulas are also possible, in place of the separate bitmaps that have been used in the past(and while we wait for the wide deployment of MathML).

Browser plug-ins, that deal with SVG are already available (Adobe offer one, for example).

X You’re still stuck?

210 You don’t understand the answer

While the FAQ maintainers don’t offer a ‘help’ service, they’re very keen that you understand the answers they’ve already written. They’re (almost) written “in a vacuum”, to provide something to cover a set of questions that have arisen; it’s always possible that they’re written in a way that a novice won’t understand them.

Which is where you can help the community. Mail the maintainers (uktug-faq@tex.ac.uk) to report the answer that you find unclear. Time permitting (the maintainers are all busy people), we’ll try and clarify the answer: so, with a bit of luck, we can together improve the value of this resource to the whole community.

(We need hardly say that we look forward to hearing from none of you: but we’re not so arrogant as to be confident that we won’t!)
211 Submitting new material for the FAQ

The FAQ will never be complete, and we always expect that there will be people out there who know better than we do about something or other. We always need to be put right about whatever we’ve got wrong, and suggestions for improvements, particularly covering areas we’ve missed are always needed: mail anything you have to uktug-faq@tex.ac.uk

If you have actual material to submit, your contribution is more than ever welcome. Submission in plain text is entirely acceptable, but if you’re really willing, you may feel free to mark up your submission in the form needed for the FAQ itself. The markup is a strongly-constrained version of \LaTeX — the constraints come from the need to translate the marked-up text to HTML on the fly (and hence pretty efficiently). There is a file \texttt{markup-syntax} in the FAQ distribution that describes the structure of the markup, but there’s no real substitute for reading at least some of the source (\texttt{faqbody.tex}) of the FAQ itself. If you understand \texttt{perl}, you may also care to look at the translation code in \texttt{texfaq2html} in the distribution: this isn’t (any longer) the program actually used on the Web site, but it’s kept up to date with that version, for testing purposes.

FAQ distribution: \texttt{help/uk-tex-faq}

212 What to do if you find a bug

For a start, make entirely sure you have found a bug. Double-check with books about \TeX, \LaTeX, or whatever you’re using; compare what you’re seeing against the other answers above; ask every possible person you know who has any \TeX-related expertise. The reasons for all this caution are various.

If you’ve found a bug in \TeX itself, you’re a rare animal indeed. Don Knuth is so sure of the quality of his code that he offers real money prizes to finders of bugs; the cheques he writes are such rare items that they are seldom cashed. If you think you have found a genuine fault in \TeX itself (or \METAFONT, or the CM fonts, or the \TeXbook), don’t immediately write to Knuth, however. He only looks at bugs once or twice a year, and even then only after they are agreed as bugs by a small vetting team. In the first instance, contact Barbara Beeton at the AMS (\texttt{bnb@math.ams.org}), or contact TUG (see question 18).

If you’ve found a bug in \LaTeX, look in the bugs database to see if it’s already been reported. If not you should submit details of the bug to the \LaTeX team. To do this, you should process the file \texttt{latexbug.tex} with \LaTeX (the file is part of the \LaTeX distribution. The process will give you instructions about what to do with your bug report (it can, for example, be sent to the team by email). Please be sparing of the team’s time; they’re doing work for the good of the whole \LaTeX community, and any time they spend tracking down non-bugs is time not available to write or debug new code. Details of the whole process, and an interface to the database, are available via \url{http://www.latex-project.org/help.html}

If you’ve found a bug in \LaTeX 2.09, or some other such unsupported software, there’s not a lot you can do about it. You may find help or \textit{de facto} support on a newsgroup such as \texttt{comp.tex.tex} or on a mailing list such as \texttt{texhax@tex.ac.uk}, but posting non-bugs to any of these forums can lay you open to ridicule! Otherwise you need to go out and find yourself a willing \TeX-consultant — TUG maintains a register of \TeX consultants (see \url{http://www.tug.org/consultants.html}).